
published in J. Comput. Appl. Math., 205(1):533–544, 2007

Convergence of Rump’s Method for Inverting

Arbitrarily Ill-Conditioned Matrices

Shin’ichi Oishi a,b Kunio Tanabe a Takeshi Ogita b,a

Siegfried M. Rump c,a

aFaculty of Science and Engineering,
Waseda University, 3–4–1 Okubo, Tokyo 169–8555 Japan

{oishi, tanabe.kunio, ogita}@waseda.jp
bCREST, Japan Science and Technology Agency

cInstitute for Reliable Computing, Hamburg University of Technology,
Schwarzenbergstr. 95, Hamburg 21071, Germany

rump@tu-harburg.de

Abstract

In this paper, the problem of inverting regular matrices with arbitrarily large condi-
tion number is treated in double precision defined by IEEE 754 floating point stan-
dard. In about 1984, Rump derived a method for inverting arbitrarily ill-conditioned
matrices. The method requires the possibility to calculate a dot product in higher
precision. Rump’s method is of theoretical interest. Rump made it clear that invert-
ing an arbitrarily ill-conditioned matrix in single or double precision does not pro-
duce meaningless numbers, but contains a lot of information in it. Rump’s method
uses such inverses as preconditioners. Numerical experiments exhibit that Rump’s
method converges rapidly for various matrices with large condition numbers. Why
Rump’s method is so efficient for inverting arbitrarily ill-conditioned matrices is a
little mysterious. Thus, to prove its convergency is an interesting problem in numer-
ical error analysis. In this article, a convergence theorem is presented for a variant
of Rump’s method.

Key words: matrix inversion, ill-conditioned matrix, accurate dot product,
precondition

1 Introduction

In this paper, we will treat the problem of inverting regular matrices A ∈ Fn×n

with arbitrarily large condition number. Here, F is the set of double precision

Preprint submitted to Elsevier Science 30 March 2008



floating point numbers defined by IEEE 754 standard [1]. We shall consider
a method which only uses ordinary floating point arithmetic {+,−, ∗, /} in
working precision (i.e. IEEE 754’s double precision) and a dot product with
k-fold accuracy. Let ∥A∥∞ denote a maximum matrix norm of A and κ(A) :=
∥A∥∞∥A−1∥∞ be its condition number. Let u be a unit round-off. For doubles
defined by IEEE 754 standard, u = 2−53 ≈ 1.1 × 10−16.

In about 1984, Rump derived a method for inverting arbitrarily ill-conditioned
matrices. The method, which he never published, requires the possibility to
calculate a dot product xT y in k-fold precision and store into working precision.
In 1990, Rump [10] reported some numerical experiments exhibiting good
convergence of his method.

Fortunately, a very efficient method for calculating a dot product in k-fold
precision was just recently developed in [7]. It uses only floating point opera-
tions in working precision, has no branches and is very fast. For k = 2, which
is quadruple precision if working precision is double precision, the method
is about 40% faster than corresponding routine of XBLAS [6], the state-of-
the-art numerical library for this purpose. In [7], we considered a dot prod-
uct calculation algorithm executable in working precision with a result as if
computed in k-fold precision. In the new paper [11], we considered how to
compute dot products using only working precision with k-fold accuracy 1 . In
Rump’s original proposal, a dot product in k-fold precision is assumed. Re-
cently, Ohta, Ogita, Rump and Oishi [8] have reformulated Rump’s method
using a dot product calculation algorithm in k-fold accuracy such as proposed
in [5,11].

Rump’s method is of theoretical interest. Rump made it clear that inverting
an arbitrarily ill-conditioned matrix A in single or double precision does not
produce meaningless numbers (what one might expect), but contains a lot of
information in it. Rump’s method uses such inverses as preconditioners for A.
As shown in [8], numerical experiments exhibit that Rump’s method converges
rapidly for almost all matrices with extremely large condition number. Why
Rump’s method is so efficient for inverting arbitrarily ill-conditioned matrices
is a little mysterious. Thus, to prove its convergency is an interesting problem
in numerical error analysis. In this article, we shall present a convergence
theorem for a variant of Rump’s method. Numerical experiments are presented
for illustrating the validity of our numerical error analyses.

In the present paper as well as in the previous paper [8], Rump’s method is
employed in a special manner in which computational precision is adaptively

1 Both algorithms, computing a dot products in k-fold precision [7] as well as in
k-fold accuracy [11] are available in INTLAB Version 5.2, the Matlab toolbox for
verified computations. Since all code is written in Matlab it is easy to use, but also
suffers from interpretation overhead.

2



increased according to the unknown condition number of the coefficient matrix.
One might suspect that computing an approximate inverse in k-fold precision
with a choice of sufficiently large k is adequate. However, since the condition
number is rarely known a priori, an appropriate choice of k is not possible in
general, hence it would lead to a time consuming repetition of trials and errors.
We would like to emphasize the inherently adaptive nature of our method
which does not waste any intermediate computations in inverting process. We
also emphasize that computing the inverse of a coefficient matrix is a necessary
measure for giving a rigorous error bound for a numerical solution of a system
of linear equations

Ax = b (1)

with b ∈ Fn, although it is widely held that computing an inverse is not an
efficient strategy for solving (1). Besides, there are various situations which
call for the inverse itself (cf. [4, Chapter 14]). In fact, by using inverses gener-
ated from Rump’s method, a method [8] was given for obtaining a numerical
solution with its rigorous error bound to (1) in case of κ(A)u > 1.

Very recently, Tanabe has shown that Rump’s method can be extended to
obtain other numerically important decompositions such as LU and QR de-
composition for regular matrices with arbitrarily large condition number [12].

2 Convergence Theorem

We assume that the dimension of the problem, n, satisfies nu ≪ 1 and
Ci

√
u ≪ 1. In this paper, Ci, i = 0, 1, 2, · · · denote numbers of O(1) sat-

isfying Ciu ≪ 1 and Ci

√
u ≪ 1. Moreover, cn denotes a numbers of O(n)

satisfying cnu ≪ 1 and cn

√
u ≪ 1.

Let A = (aij) be a real n×n matrix and Π = (πij) be an approximate inverse
of A. Let b ∈ Rn and x̃ be an approximate solution of Ax = b. It is known
that if

∥ΠA − I∥ < 1 (2)

is satisfied, A becomes regular. Here, I is the n × n identity matrix and ∥ · ∥
is a subordinate matrix norm. Further,

∥A−1∥ 5 ∥Π∥
1 − ∥ΠA − I∥

(3)

and

∥x̃ − A−1b∥ 5 ∥Π(Ax̃ − b)∥
1 − ∥ΠA − I∥

(4)

hold. Rump’s method is an algorithm to produce Π. Thus, from the above
mentioned fact, we set a purpose of this paper to show that Π generated by
Rump’s method eventually satisfies (2).

3



For the purpose, we introduce an accurate dot product calculation algorithm.
Let A,B ∈ Fn×n. Let us assume that we have an accurate dot product algo-
rithm which calculates Di ∈ Fn×n, i = 1, 2, . . . , k, satisfying

|
k∑

i=1

Di − AB| 5 C0u
k|AB|. (5)

Here, AB is the usual (error free) matrix multiplication and C0 is a constant
satisfying C0 = O(1). We denote such an algorithm as

D1:k = [AB]k with D1:k := D1 + D2 + · · · + Dk, Di ∈ Fn×n.

A very efficient method for calculating such a dot product in k-fold accuracy
was just developed in [11]. It uses only floating point operations in working
precision, has no branches and is very fast.

In this paper, to simplify the life, working precision is assumed to be the double
precision defined by IEEE 754 floating point standard. In the following, we
use a variant of Rump’s method as given by the following Algorithm 1, which
is written in Matlab-like:

Algorithm 1 Modified Rump’s Method I

S̃0 = A + ∆A; % perturbation for A

X0 = inv(S̃0); Π1 = X0;

for k = 1 : kmax

C = [Π1:kA]1;

S̃k = C + ∆C; % perturbation for [Π1:kA]1

Xk = inv(S̃k); % inversion of S̃k in working precision

Π1:k+1 = [XkΠ1:k]k+1; % (k + 1)-fold accuracy

end

Here, inv(B) is a built-in function in Matlab for inverting B ∈ Fn×n. Matrices
∆A ∈ Fn×n and ∆C ∈ Fn×n are defined by (∆A)ij = rij

√
u|Aij| and (∆C)ij =

sij

√
u|Cij|, respectively for all (i, j), where rij and sij are pseudo-random

numbers distributed uniformly in [−1, 1]. Note that the perturbation ∆A and
∆C regularize A and [Π1:kA]1, respectively.

To simplify the notation, we will write Πm instead of Π1:m throughout the
paper except in algorithms. We assume that all numerical calculation is done
under IEEE 754’s double precision arithmetic in the nearest rounding mode.

4



Let Sk := ΠkA. We now show that

|S̃k − Sk| 5 C1

√
u|S̃k|, (6)

where C1 = O(1).

From (5), we have
|Sk − [Sk]1| 5 C0u|Sk|. (7)

From the definition of ∆C, it follows that

|Sk − S̃k| 5 |Sk − [Sk]1| + |[Sk]1 − S̃k| 5 C0u|Sk| +
√

u|[Sk]1|. (8)

From
|Sk| 5 |[Sk]1| + |Sk − [Sk]1| 5 |[Sk]1| + C0u|Sk|, (9)

we have

|Sk| 5 1

1 − C0u
|[Sk]1|. (10)

Moreover, from

|[Sk]1| 5 |S̃k| + |[Sk]1 − S̃k| 5 |S̃k| +
√

u|[Sk]1|, (11)

it follows that

|[Sk]1| 5 1

1 −
√

u
|S̃k|. (12)

Substituting (10) and (12) into (8), it is seen that (6) holds with

C1 =
1

1 −
√

u
(1 +

C0

√
u

1 − C0u
). (13)

Using (6), we also have

|S̃k| 5 1

1 − C1

√
u
|Sk|. (14)

Since S̃k ∈ Fn×n, Xk can be computed by a standard inversion algorithm using
Gaussian elimination in working precision.

2.1 Decrease of Condition Number

The target of this subsection is to show that

κ(Sk+1) = O(
√

u)κ(Sk) + O(1) (15)

provided that κ(Sk) = u−1.

5



For the purpose, in the first place, we estimate ∥Sk+1∥∞ assuming that κ(Sk) =
u−1. Let Γ := S̃k − Sk. Then, from (6) and (14) we have

∥Γ∥∞ ≤ C1

√
u∥S̃k∥∞ ≤ C ′

1

√
u∥Sk∥∞, (16)

where C ′
1 := C1/(1−C1

√
u). We note here that (16) states that the difference

between S̃k and Sk, which is almost singular, is of order
√

u∥S̃k∥. Thus, usually
a distance between S̃k and the nearest singularity, which lies very near to Sk,
becomes about C1

√
u. This implies (cf. [3,2])

κ(S̃k) = C2u
−1/2. (17)

Here, we assume

Assumption 1 C2 = O(1).

This implies κ(S̃k) = C2u
−1/2 ≪ u−1. Examples in the next section show

that Assumption 1 is satisfied in many instances. Since a good approximate
inverse of a matrix in Fn×n with a condition number much less than u−1 can
be obtained in working precision, under Assumption 1 we can expect that Xk

becomes a good approximate inverse of S̃k satisfying

Assumption 2 ∥I − XkS̃k∥∞ = ε ≪ 1.

We assume that Assumption 2 also holds. It follows from Assumption 2, S̃−1
k

exists. Then, we note that

∥Xk − S̃−1
k ∥∞ = ∥(I − XkS̃k)S̃

−1
k ∥∞ 5 ∥S̃−1

k ∥∞∥I − XkS̃k∥∞

5 ∥Xk∥∞
1 − ∥I − XkS̃k∥∞

∥I − XkS̃k∥∞

=
ε

1 − ε
∥Xk∥∞. (18)

From (18), it follows

∥Xk||∞ 5 ∥S̃−1
k ∥∞ + ∥Xk − S̃−1

k ∥∞ 5 ∥S̃−1
k ∥∞ +

ε

1 − ε
∥Xk∥∞. (19)

This and Assumption 2 imply that

∥Xk∥∞ 5 ∥S̃−1
k ∥∞

1 − ε

1 − ε

=
1 − ε

1 − 2ε
∥S̃−1

k ∥∞ = C3∥S̃−1
k ∥∞. (20)

Here, C3 := (1− ε)/(1− 2ε) = O(1). Let L and U be computed LU factors of
S̃k. Then, since we have used Matlab’s ‘inv’ function, we have from [4, p. 268,
(14.18)]

∥I − XkS̃k∥∞ 5 cnu∥Xk∥∞∥L∥∞∥U∥∞, (21)

6



where cn = O(n). Here, we introduce a constant gk satisfying ∥L∥∞∥U∥∞ 5
gk∥S̃k∥∞. Then, we have

∥I − XkS̃k∥∞ 5 cngku∥Xk∥∞∥S̃k∥∞. (22)

From (17), (20) and (22), it follows that

∥I − XkS̃k∥∞ 5 cngkC3uκ(S̃k) = cnC4

√
u, (23)

where C4 := gkC2C3. Under Assumption 2, which states ∥I − XkS̃k∥∞ ≪ 1,
(23) asserts ∥I − XkS̃k∥∞ can be estimated as O(n

√
u) provided that C4 =

O(1). Thus, it turns out that Assumption 2 is equivalent to

Assumption 3 C4 = O(1) satisfying cnC4

√
u ≪ 1.

Under this assumtion, we now show Xk is the exact inverse of S̃k + ∆, where
∥∆∥∞ 5 cnC5

√
u∥Sk∥∞. Here, C5 is the constant defined below. From (23),

we have for ∆ = X−1
k − S̃k

∥∆∥∞ = ∥X−1
k − S̃k∥∞ = ∥X−1

k (I − XkS̃k)∥∞
5 ∥X−1

k ∥∞∥I − XkS̃k∥∞

5 ∥S̃k∥∞
1 − ∥I − XkS̃k∥∞

∥I − XkS̃k∥∞

5 cnC4

√
u

1 − cnC4

√
u
∥S̃k∥∞ 5 cnC5

√
u∥Sk∥∞. (24)

Here, using (16) we have put

C5 :=
C ′

1C4

C1(1 − cnC4

√
u)

= O(1). (25)

Lemma 1 Let us assume that Assumptions 1 and 3 are satisfied. Then, the
following a priori error estimate holds:

∥I − XkSk∥∞ 5 C7, (26)

where

C7 := C2C3(C1 + cngk

√
u). (27)

Proof. Using (16), (20) and (22), we have

7



∥I − XkSk∥∞ = ∥I − Xk(Sk − S̃k + S̃k)∥∞
5 ∥Xk(Sk − S̃k)∥∞ + ∥I − XkS̃k∥∞
5C1

√
u∥Xk∥∞∥S̃k∥∞ + cngku∥Xk∥∞∥S̃k∥∞

5 (C1 + cngk

√
u)

√
u∥Xk∥∞∥S̃k∥∞

= C6

√
uκ(S̃k), (28)

where
C6 := C3(C1 + cngk

√
u). (29)

This and (17) prove the lemma. 2

From this lemma, we have

∥XkSk∥∞ 5 ∥XkSk − I∥∞ + ∥I∥∞ = 1 + ∥I − XkSk∥∞
5 1 + C7. (30)

Here, we derive a relation between Sk+1 and XkSk:

|Sk+1 − XkSk|= |Πk+1A − XkΠkA| = |(Πk+1 − XkΠk)A|
5 |Πk+1 − XkΠk||A| (31)

Since Πk+1 = [XkΠk]k+1, we have

|Πk+1 − XkΠk| 5 C8u
k+1|XkΠk|. (32)

Here, C8 = O(1). Inserting this into (31), we have

|Sk+1 − XkSk| 5 C8u
k+1|Xk||Πk||A|. (33)

Thus, we have
∥Sk+1∥∞ 5 ∥XkSk∥∞ + uk+1α, (34)

where
α := C8∥|Xk||Πk||A|∥∞. (35)

Here, we assume

Assumption 4 uk+1α ≪ 1.

Remark 1 Since Πk+1 ≈ XkΠk, usually we have

∥Πk+1∥∞ ≈ ∥Πk∥∞∥Xk∥∞. (36)

Here, Πk, k = 1, 2, . . . , work as the preconditioners for A, we have ∥Sk∥∞ =
∥ΠkA∥∞ = O(1) and therefore ∥S̃k∥∞ = O(1) for k = 1. Thus, from (20)

∥Xk∥∞ 5 C3∥S̃−1
k ∥∞ = C3κ(S̃k)∥S̃k∥−1

∞ = O(u−1/2) (37)

8



for k = 1. Moreover, it can be expected that S̃0 is not so ill-conditioned and
κ(S̃0) = ∥S̃0∥∞∥S̃−1

0 ∥∞ = O(u−1/2), so that ∥X0∥∞ = ∥inv(S̃0)∥∞ ≈ ∥S̃−1
0 ∥∞.

This and ∥S̃0∥∞ ≈ ∥A∥∞ yield

∥X0∥∞ = O(u−1/2)∥A∥−1
∞ . (38)

From (36), (37) and (38), it follows

∥Πk∥∞ ≈ O(u−k/2)∥A∥−1
∞ (39)

provided that κ(Sk) > u−1. Thus, from (35) we have

uk+1α ≈ O(uk+1u−1/2(u1/2)−k)∥A∥−1
∞ ∥A∥∞ = O(u(k+1)/2). (40)

From this remark, we can expect Assumption 4 is usually satisfied. If this
assumption is not satisfied, we modify Algorithm 1 as follows:

Algorithm 2 Modified Rump’s Method II

S̃0 = A + ∆A;

X0 = inv(S̃0); Π1 = X0;

for k = 1 : kmax

C = [Π1:(k−1)m+1A]1; % m = 1

S̃k = C + ∆C;

Xk = inv(S̃k);

Π1:km+1 = [XkΠ1:(k−1)m+1]km+1; % (km + 1)-fold accuracy

end

Then, Assumption 4 becomes

Assumption 5 ukm+1α ≪ 1,

which is satisfied for sufficiently large m ∈ N. Algorithm 2 is used if needed.
Thus, without loss of generality, we can assume that Assumption 4 is satisfied.

Under Assumption 4, it can be seen from (34) that

∥Sk+1∥∞ = ∥XkSk∥∞ + ε, (41)

where ε ≪ 1.

Now, we estimate ∥S−1
k+1∥∞. Using (16), (24) and (25), we have

9



∥(XkSk)
−1∥∞ = ∥((Sk + ∆ + Γ)−1Sk)

−1∥∞ = ∥I + S−1
k (∆ + Γ)∥∞

5 1 + ∥S−1
k ∥∞(∥∆∥∞ + ∥Γ∥∞)

5 1 + (C ′
1 + cnC5)

√
u∥Sk∥∞∥S−1

k ∥∞
5 1 + (C ′

1 + cnC5)
√

uκ(Sk). (42)

Let P and Q be regular n × n matrices. If ∥P − Q∥∞ 5 δ, it follows that

∥P−1 − Q−1∥∞ 5 ∥P−1(P − Q)Q−1∥∞ 5 δ∥P−1∥∞∥Q−1∥∞. (43)

Then, (33) and (43) yield

∥S−1
k+1 − (XkSk)

−1∥∞ 5 ∥Sk+1 − XkSk∥∞∥S−1
k+1∥∞∥(XkSk)

−1∥∞
5uk+1β∥S−1

k+1∥∞ (44)

where
β := C8∥|Xk||Πk+1||A|∥∞∥(XkSk)

−1∥∞.

From (44), we have

∥S−1
k+1∥∞ 5 ∥S−1

k+1 − (XkSk)
−1∥∞ + ∥(XkSk)

−1∥∞
5uk+1β∥S−1

k+1∥∞ + ∥(XkSk)
−1∥∞. (45)

If it holds that

Assumption 6 uk+1β ≪ 1,

then we have
∥S−1

k+1∥∞ 5 (1 − uk+1β)−1∥(XkSk)
−1∥∞. (46)

If Assumption 6 is not satisfied, we use the modified Rump’s method II (Al-
gorithm 2). Namely,

Assumption 7 ukm+1β ≪ 1

is satisfied if we choose m ∈ N sufficiently large. Then, (46) becomes

∥S−1
k+1∥∞ 5 (1 − ukm+1β)−1∥(XkSk)

−1∥∞. (47)

Thus, without loss of generality, we can assume that Assumption 6 is satisfied.
Then, it holds

∥S−1
k+1∥∞ 5 C9∥(XkSk)

−1∥∞, (48)

where C9 = O(1).

Summarizing the above mentioned estimations (i.e., from (30), (41), (42) and
(48)), we have

10



κ(Sk+1) = ∥Sk+1∥∞∥S−1
k+1∥∞

5 (∥XkSk∥∞ + ϵ)C9∥(XkSk)
−1∥∞

5 (1 + C7 + ϵ)C9(1 + (C ′
1 + cnC5)

√
uκ(Sk))

= µk

√
uκ(Sk) + O(1). (49)

Here, µk := C9(C
′
1 + cnC5)(1 + C7 + ε) = O(n).

Summing up the above mentioned discussions, we have the following theorem:

Theorem 1 Assume that κ(Sk) = u−1. Further, let us assume that Assump-
tions 1, 3, 4 and 6 (or Assumptions 1, 3, 5 and 7) are satisfied. Then,
κ(Sk+1) 5 µk

√
uκ(Sk) + O(1) with µk = O(n).

If µk

√
u < 1 holds for k = 1, 2, · · · , K, then κ(Sk) decreases as O((n

√
u)k)κ(A)

during k 5 K and finally κ(Sk) becomes O(1) as k becomes sufficiently large
provided that k 5 K.

2.2 Convergence

The target of this subsection is to show ∥I −Sk+1∥∞ = O(
√

u) when κ(Sk) =
O(1).

Since ∥Sk − S̃k∥∞ 5 C1

√
u∥Sk∥∞, the distance between S̃k and the nearest

singularity is the same order with that between Sk and the nearest singularity.
This means that κ(S̃k) ≈ κ(Sk). Thus, we have κ(S̃k) = O(1). Then, we can
expect that Xk becomes a good approximate inverse of S̃k satisfying

∥I − XkS̃k∥∞ ≪ 1. (50)

This implies that there exist C ′
3 = O(1) such that

∥Xk∥∞ 5 C ′
3∥S̃−1

k ∥∞. (51)

Let L and U be computed LU factors of S̃k. From κ(S̃k) = O(1), we can
assume that

Assumption 8 ∥L∥∞ = O(1), ∥U∥∞ = O(1) and ∥Xk∥∞ = O(1).

Then, from (28) we have

∥I − XkSk∥∞ 5 C ′
6

√
uκ(S̃k) = C11

√
u, (52)

where C ′
6 is the constant obtained from C6 by replacing C3 with C ′

3 and C11 :=
C ′

6κ(S̃k). Thus, from (33) we have

11



∥I − Sk+1∥∞ 5 ∥I − XkSk∥∞ + ∥XkSk − Sk+1∥∞
5C11

√
u + uk+1α, (53)

where α is defined in (35). Since κ(S̃k) = O(1), we assume that

Assumption 9 C11 = O(1).

Furthermore, we assume that k is so large such that

Assumption 10 uk+1α ≪ 1.

If this assumption does not hold, we use the modified Rump’s method II
(Algorithm 2). Then,

∥I − Sk+1∥∞ 5 C11

√
u + ukm+1α (54)

holds. Thus, if m is large enough, it holds that

Assumption 11 ukm+1α ≪ 1.

Thus, without loss of genelarity, we can assume that Assumption 10 is satisfied
and

C11

√
u + ε′ (55)

holds, where ε′ ≪ 1.

Summing up the above mentioned discussions, we have the following theorem:

Theorem 2 Let κ(Sk) = O(1). We assume that Assumptions 8, 9 and 10 (or
Assumptions 8, 9 and 11) are satisfied. Then, ∥I−Sk+1∥∞ = ∥I−Πk+1A∥∞ =
C11

√
u + ε′ ≪ 1 holds.

3 Numerical Experiments

3.1 Numerical Examples

We now show the following numerical examples.

Example 1 In the first place, we consider Rump’s random matrices with the
prescribed condition number [9] as a coefficient matrix A. In this example,
we take n = 20 and κ(A) ≈ 2.0 × 1030. In this example, we have ∥A∥∞ ≈
1.5× 107. The result of a numerical experiment is shown in Table 1. In the
table, for example, 3.7e + 09 = 3.7 × 109.

12



Table 1
Example 1: Rump’s random matrix (n = 20, κ(A) ≈ 2.0 × 1030)

k ∥S̃k∥∞ ∥L∥∞ ∥U∥∞ ∥Xk∥∞ ∥I − XkS̃k∥∞ ∥Πk∥∞

1 8.0e + 01 8.6e + 00 8.0e + 01 3.7e + 09 1.5e − 06 1.1e + 04

2 2.2e + 02 5.0e + 00 2.2e + 02 1.3e + 08 2.8e − 07 4.4e + 11

3 1.5e + 01 4.3e + 00 1.5e + 01 9.6e + 06 2.7e − 09 1.9e + 17

4 1.1e + 00 1.1e + 00 1.0e + 00 1.1e + 00 4.7e − 16 1.3e + 23

Example 2 In this example, we also consider Rump’s random matrices as a
coefficient matrix A. We take n = 100 and κ(A) ≈ 1.4× 10113. In this case,
we have ∥A∥∞ ≈ 1.8× 1016. The result of a numerical experiment is shown
in Table 2.

Table 2
Example 2: Rump’s random matrix (n = 100, κ(A) ≈ 1.4 × 10113)

k ∥S̃k∥∞ ∥L∥∞ ∥U∥∞ ∥Xk∥∞ ∥I − XkS̃k∥∞ ∥Πk∥∞

1 2.3e + 03 2.7e + 01 2.3e + 03 2.5e + 10 7.2e − 05 5.7e − 04

2 3.7e + 03 2.3e + 01 3.7e + 03 3.4e + 09 1.6e − 05 4.4e + 03

3 4.2e + 02 2.1e + 01 3.7e + 02 1.1e + 10 2.1e − 05 2.5e + 09

4 4.8e + 02 2.1e + 01 4.4e + 02 1.4e + 11 2.4e − 04 4.8e + 16

5 6.1e + 03 1.3e + 01 6.1e + 03 1.8e + 09 9.7e − 06 2.2e + 25

6 5.8e + 02 1.5e + 01 7.3e + 02 1.1e + 10 2.3e − 05 5.4e + 30

7 4.8e + 02 9.7e + 00 4.2e + 02 6.2e + 10 5.5e − 05 1.2e + 38

8 2.8e + 03 1.2e + 01 2.8e + 03 2.8e + 11 3.8e − 04 9.9e + 45

9 1.9e + 04 9.2e + 00 1.9e + 04 1.9e + 10 2.2e − 05 1.4e + 54

10 2.7e + 03 8.3e + 00 2.7e + 03 2.9e + 11 9.0e − 04 1.3e + 60

11 1.5e + 04 5.6e + 00 1.5e + 04 1.0e + 10 2.4e − 05 3.3e + 68

12 1.3e + 03 7.1e + 00 1.3e + 03 2.0e + 11 1.3e − 04 7.8e + 73

13 4.1e + 03 8.0e + 00 4.1e + 03 9.7e + 10 9.7e − 05 5.1e + 82

14 2.7e + 03 7.0e + 00 2.4e + 03 1.8e + 10 1.8e − 05 1.2e + 90

15 9.9e + 02 5.0e + 00 9.9e + 02 1.3e + 03 7.7e − 13 5.9e + 96

Example 3 In this example, we further consider Rump’s random matrices as
a coefficient matrix A. We take n = 500 and κ(A) ≈ 1.1×1061. In this case,
we have ∥A∥∞ ≈ 5.7 × 108. The result of a numerical experiment is shown
in Table 3.

13



Table 3
Example 3: Rump’s random matrix (n = 500, κ(A) ≈ 1.1 × 1061)

k ∥S̃k∥∞ ∥L∥∞ ∥U∥∞ ∥Xk∥∞ ∥I − XkS̃k∥∞ ∥Πk∥∞

1 5.2e + 03 1.1e + 02 4.3e + 03 1.6e + 10 2.2e − 04 7.7e + 04

2 4.5e + 03 9.2e + 01 4.5e + 03 7.2e + 10 1.0e − 03 2.3e + 11

3 9.4e + 03 7.9e + 01 9.6e + 03 4.9e + 10 7.2e − 04 3.4e + 18

4 1.4e + 04 6.3e + 01 1.4e + 04 1.7e + 10 1.6e − 04 1.6e + 25

5 3.2e + 03 3.2e + 01 2.6e + 03 6.7e + 10 2.5e − 04 1.6e + 31

6 3.5e + 03 2.2e + 01 3.5e + 03 4.7e + 10 2.8e − 04 3.3e + 38

7 2.6e + 03 2.5e + 01 2.4e + 03 1.4e + 10 1.3e − 04 4.9e + 45

8 3.8e + 02 1.1e + 01 3.7e + 02 3.1e + 02 8.8e − 13 2.4e + 52

Example 4 In this example, we consider 20× 20 Hilbert matrix H. To avoid
expression error, we consider

A = const. × H.

Here, const. is some common multiplier of 2, 3, . . . , 39. In this example, we
have κ(A) ≈ 6.3 × 1028 and ∥A∥∞ ≈ 1.9 × 1016. The result of a numerical
experiment is shown in Table 4.

Table 4
Example 4: Hilbert matrix (n = 20, κ(A) ≈ 6.3 × 1028)

k ∥S̃k∥∞ ∥L∥∞ ∥U∥∞ ∥Xk∥∞ ∥I − XkS̃k∥∞ ∥Πk∥∞

1 5.1e + 01 7.4e + 00 4.8e + 01 6.5e + 08 3.8e − 07 4.1e − 06

2 3.8e + 01 8.3e + 00 3.8e + 01 4.1e + 08 2.6e − 07 5.4e + 01

3 1.5e + 01 5.6e + 00 1.3e + 01 2.9e + 05 1.0e − 10 3.4e + 08

3.2 Summary of Numerical Experiments

Results of numerical experiments shown in Eamples 1 to 4 satisfy all assum-
tions mentioned in this paper. Thus, based on Theorem 1, κ(Sk) decrease
until κ(Sk) becomes O(1). Once κ(Sk) becomes O(1), based on Theorem 2,
∥I − Πk+1A∥∞ ≪ 1 holds.

Other numerical experiments exhibit similar behaviors.

14



4 Conjecture

It should be noted that the original Rump’s method has the following form:

Algorithm 3 The Original Rump’s Method

S̃0 = A;

X0 = inv(S̃0);

(∗) while error, X0 = inv(S̃0 + ∆); end % |∆| ≈ u|S̃0|

Π1 = X0;

for k = 1 : kmax

S̃k = [Π1:kA]1;

Xk = inv(S̃k);

(∗) while error, Xk = inv(S̃k + ∆); end % |∆| ≈ u|S̃k|

Π1:k+1 = [XkΠ1:k]k+1;

end

Here, the line (∗) works as a regularization of S̃k, which is done similarly in
the proposed algorithms. For example, one may set ∆ij = diju|S̃k|ij, where
dij is a pseudo-random number distributed uniformly in [−1, 1]. Since S̃k are
extremely ill-conditioned, it may happen that the function ‘inv’, i.e. Gaus-
sian elimination, ends prematurely. This perturbation ensures ending of the
algorithm.

Numerical experiments show that this form of Rump’s method works much
more efficient than Algorithm 1. For example, we again treat Example 2 in
Section 3. The result of a numerical experiment by Algorithm 3 is shown in
Table 5.

In this example, Algorithm 3 requires only 8 iterations until convergence, while
Algorithm 1 required 15 iterations. This means that the convergence speed of
the original Rump’s method is almost double compared with that for modified
Rump’s method proposed in this paper. This fact is confirmed by a number
of numerical experiments done by the authors.

In the original Rump’s method, a distance between S̃k and the nearest singu-
larity is usually about C12u. This implies κ(S̃k) ≈ (C12u)−1 (cf. [2]). In this
case, even if C12 = O(1), κ(S̃k) becomes an order of u−1. Thus, usually we
have

∥I − XkS̃k∥∞ = O(n) > 1 (56)

15



Table 5
Numerical Result by Original Rump’s Method (Example 2)

k ∥S̃k∥∞ ∥L∥∞ ∥U∥∞ ∥Xk∥∞ ∥I − XkS̃k∥∞ ∥Πk∥∞

1 2.1e + 03 3.0e + 01 2.1e + 03 7.9e + 16 1.1e + 03 2.1e + 04

2 1.1e + 03 2.5e + 01 1.1e + 03 7.5e + 16 3.7e + 02 1.6e + 18

3 3.7e + 02 2.9e + 01 4.6e + 02 7.5e + 16 3.8e + 02 1.5e + 32

4 3.8e + 02 2.7e + 01 3.4e + 02 8.3e + 17 4.6e + 03 2.2e + 46

5 4.6e + 03 1.9e + 01 5.6e + 03 2.9e + 16 7.0e + 02 1.7e + 61

6 7.0e + 02 2.5e + 01 1.3e + 03 1.5e + 17 9.6e + 02 5.4e + 73

7 9.5e + 02 1.7e + 01 1.3e + 03 1.8e + 15 8.0e + 00 7.4e + 87

8 8.8e + 00 8.9e + 00 1.9e + 00 1.0e + 01 4.3e − 15 6.6e + 96

provided that κ(Sk) > u−1. This is also confirmed from numerical experiments
as shown in Table 4. Thus, the arguments in Section 2 cannot be applied to
this case.

However, even in this case, the following conjecture might be held:

Conjecture 1 Xk is the exact inverse of S̃k + ∆, where ∥∆∥∞ 5 cnu∥S̃k∥∞
with cn = O(n).

If we can prove this conjecture, the convergence of the original Rump’s method
follows by the similar arguments in Section 2. If this is the case, its convergence
speed is like O((nu)k)κ(A) during κ(Sk) > u−1, which is consistent with our
numerical experiments.

However, until now we cannot prove Conjecture 1. Thus, saying fairly, the
convergence proof of the original Rump’s method is still open. However, the
authors think their arguments clarify at least a part of a mechanism of the
convergence of Rump’s method.

Acknowledgements

This research was partially supported by Grant-in-Aid for Specially Promoted
Research (No. 17002012: Establishment of Verified Numerical Computation)
from the Ministry of Education, Science, Sports and Culture of Japan.

16



References

[1] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, Std 754–
1985 edition, IEEE, New York, 1985.

[2] J. B. Demmel, Condition numbers and the distance to the nearest ill-posed
problem, Numer. Math., 51 (1987), 251–289.

[3] C. Eckhart and G. Young, The approximatoin of one matrix by another of lower
rank, Psychometrika, 1 (1936), 211–218

[4] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM
Publications, Philadelphia, PA, 2002.

[5] U. W. Kulisch, W. L. Miranker, The arithmetic of the digital computer: A new
approach, SIAM Review, 28 (1986), 1–40.

[6] X. Li, J. B. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
S. Kang, A. Kapur, M. Martin, B. Thompson, T. Tung, D. Yoo, Design,
implementation and testing of extended and mixed precision BLAS, ACM
Trans. Math. Softw., 28 (2002), 152–205.

[7] T. Ogita, S. M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci.
Comput., 26:6 (2005), 1955–1988.

[8] T. Ohta, T. Ogita, S. M. Rump, S. Oishi, Numerical verification method for
arbitrarily ill-conditioned linear systems, Trans. JSIAM, 15:3 (2005), 269–287.
[in Japanese]

[9] S. M. Rump, A class of arbitrarily ill-conditioned floating-point matrices, SIAM
J. Matrix Anal. Appl., 12:4 (1991), 645–653.

[10] S. M. Rump, Approximate inverses of almost singular matrices still
contain useful information, Forschungsschwerpunktes Informations- und
Kommunikationstechnik, Technical Report 90.1, Hamburg University of
Technology, 1990.

[11] S. M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation, 41 pages,
submitted for publication, 2006. Preprint is available from
http://www.ti3.tu-harburg.de/publications/rump .

[12] K. Tanabe, private communication.

17


