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ACCURATE SUM AND DOT PRODUCT∗

TAKESHI OGITA † , SIEGFRIED M. RUMP ‡ , AND SHIN’ICHI OISHI §

Abstract. Algorithms for summation and dot product of floating point numbers are presented
which are fast in terms of measured computing time. We show that the computed results are as
accurate as if computed in twice or K-fold working precision, K ≥ 3. For twice the working precision
our algorithms for summation and dot product are some 40 % faster than the corresponding XBLAS
routines while sharing similar error estimates. Our algorithms are widely applicable because they
require only addition, subtraction and multiplication of floating point numbers in the same working
precision as the given data. Higher precision is unnecessary, algorithms are straight loops without
branch, and no access to mantissa or exponent is necessary.
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1. Introduction. We present fast algorithms to compute approximations of high
quality of the sum and the dot product of floating point numbers. We show that results
share the same error estimates as if computed in twice or K-fold working precision
and rounded back to working precision (for precise meaning, see Subsection 1.2).

We interpret fast not only in terms of floating point operations (flops) but in
terms of measured computing time. Our algorithms do not require other than one
working precision. Since summation and dot product are most basic tasks in numerical
analysis, there are numerous algorithms for that, among them [6, 9, 11, 14, 17, 18,
19, 20, 22, 25, 26, 27, 28, 29, 31, 34, 35, 36, 37, 38, 41]. Higham [15] devotes an entire
chapter to summation. Accurate summation or dot product algorithms have various
applications in many different areas of numerical analysis. Excellent overviews can
be found in [15, 26].

1.1. Previous work. We collect some notes on previous work to put our results
into suitable perspective; our remarks are by no means complete. Dot products can be
transformed into sums, therefore much effort is concentrated on accurate summation
of floating point numbers. In the following we assume the computer arithmetic to
satisfy the IEEE 754 standard [2].

Many approaches to diminish rounding errors in floating point summation sort
input data by absolute value. If all summands are of the same sign, increasing ordering
is best. However, if summation is subject to cancellation, decreasing order may be
superior [15]. A major drawback of such approaches is that optimization of code by
today’s compilers is substantially jeopardized by branches.

Floating point summation is frequently improved by compensated summation.
Here, a cleverly designed correction term is used to improve the result. One of the
first is the following one due to Dekker [10].
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Algorithm 1.1. Compensated summation of two floating point numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
y = fl((a− x) + b)

For floating point arithmetic with rounding to nearest and base 2, e.g. IEEE 754
arithmetic, Dekker [10] showed in 1971 that the correction is exact if the input is
ordered by magnitude, that is

x + y = a + b(1.1)

provided |a| ≥ |b|. A similar correction is used in the Kahan-Babuška algorithm
[3, 32, 31], and in a number of variants (e.g. [16, 31]). Those algorithms are almost
ideally backward stable, that is for floating point numbers pi, 1 ≤ i ≤ n, the computed
sum s̃ satisfies

s̃ =
n∑

i=1

pi(1 + εi), |εi| ≤ 2eps +O(eps2).(1.2)

An interesting variant of the Kahan-Babuška algorithm was given by Neumaier
[31]. The result s̃ of Algorithm IV in his paper satisfies

|s̃−
n∑

i=1

pi| ≤ eps|
n∑

i=1

pi|+ (0.75n2 + n)eps2
n∑

i=1

|pi|, for 3neps ≤ 1.(1.3)

Without knowing, Neumaier uses Dekker’s Algorithm 1.1 ensuring |a| ≥ |b| by com-
parison. Neumaier’s result is of a quality as if computed in twice the working precision
and then rounded into working precision. If input data is sorted decreasingly by ab-
solute value, Priest showed that two extra applications of the compensation process
produces a forward stable result of almost optimal relative accuracy [37].

However, branches may increase computing time due to lack of compiler optimiza-
tion. Already in 1969, Knuth [23] presented a simple algorithm (that is Algorithm 3.1
(TwoSum) in this paper) to compute x and y satisfying (1.1) regardless of the magni-
tude of a and b. The algorithm requires 6 flops without branch. Counting absolute
value and comparison as one flop, Dekker’s Algorithm 1.1 with ensuring |a| ≥ |b|
by comparison requires 6 flops as well; however, because of less optimized code, it
is up to 50 % slower than Knuth’s method. Therefore we will develop branch-free
algorithms to be fast in terms of execution time. Combining Kahan-Babuška’s and
Knuth’s algorithm is our first summation algorithm Sum2.

Knuth’s algorithm, like Dekker’s with sorting, transforms any pair of floating
point numbers (a, b) into a new pair (x, y) with

x = fl(a + b) and a + b = x + y.

We call an algorithm with this property error-free transformation. Such trans-
formations are in the center of interest of our paper. Extending the principle of
an error-free transformation of two summands to n summands is called “distillation
algorithms” by Kahan [21]. Here input floating point numbers pi, 1 ≤ i ≤ n, are trans-
formed into p

(k)
i with

∑n
i=1 pi =

∑n
i=1 p

(k)
i for k ≥ 1. Some distillation algorithms
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use sorting of input data by absolute value leading to a computing time O(n log n) for
adding n numbers. An interesting new distillation algorithm is presented by Anderson
[1]. He uses a clever way of sorting and deflating positive and negative summands.
However, branches slow down computations, see Section 6.

Another transformation is presented by Priest [36]. He transforms input numbers
pi, 1 ≤ i ≤ n into a non-overlapping sequence qi, such that the mantissa bit of lowest
significance of qi is greater than the one of highest significance of qi+1 (see Figure
1.1).

Fig. 1.1. Non-overlapping sequence by Priest’s scheme

Shewchuk [41] weakens this into nonzero-overlapping sequences as shown in Figure
1.2. This means that mantissa bits of qi and qi+1 may overlap, but only if the
corresponding bits of qi are zero. He shows that this simplifies normalization and
improves performance.

Fig. 1.2. Nonzero-overlapping sequence by Shewchuk’s scheme

Quite different approaches use the fact that due to the limited exponent range, all
IEEE 754 double precision floating point numbers can be added in a superlong accu-
mulator (cf. Kulisch and Miranker [24]). Doubling the size of the accumulator creates
algorithms for dot products as well. Splitting mantissas and adjustment according to
exponents requires some bit manipulations. The result within the long accumulator
represents the exact sum or dot product and can be rounded to the desired precision.

A simple heuristic to improve the accuracy of matrix products is implemented
in INTLAB [39]. Matrices of floating point numbers A = (aij), B = (bij) are first
split into A = A1 + A0 and B = B1 + B0, where the (i, j)-th entries of A1 and B1

comprise of the first M significant bits of aij and bij , respectively. For IEEE 754
double precision we choose M = 17. The matrix product A ·B is then approximated
by A1 ·B1 + (A1 ·B0 + A0 ·B). The heuristic is that for not too large dimension and
for input aij , bij not differing too much in magnitude, the product A1 ·B1 is exact, so
that the final approximation is of improved accuracy. This method is implemented in
the routine lssresidual for residual correction of linear systems in INTLAB.

Another interesting and similar approach was recently presented by Zielke and
Drygalla [44]. They split input numbers pi according to the scheme in Figure 1.3.

The chunks of maximally M bits start at the most significant bit of all input data
pi. For proper choice of M depending on n and the input format, summation of the
most significant chunks is exact. Cancellation can be monitored by the magnitude of
the previous sum when adding the next chunks. Note that in the INTLAB method
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M bits M bits M bits
Fig. 1.3. Zielke and Drygalla’s scheme

the splitting for all matrix entries is independent of the exponent of the entries and
can be performed without branch, whereas here the splitting is individual for every
matrix element. On the other hand, the method by Zielke and Drygalla allows to
compute a forward stable result of the dot product. The advantage over the long
accumulator approach is that the amount of work is determined by the condition of
the problem.

Recently, Demmel and Hida presented algorithms using a wider accumulator [11].
Floating point numbers pi, 1 ≤ i ≤ n, given in working precision with t bits in
the mantissa are added in an extra-precise accumulator with T bits, T > t. Four
algorithms are presented with and without sorting input data. The authors give a
detailed analysis of the accuracy of the result depending on t, T and the number of
summands. In contrast to our methods which use only working precision they need
in any case some extra-precise floating point format.

Finally, XBLAS [26], the Extended and Mixed Precision BLAS, contains algo-
rithms based on [4, 5] which are very similar to ours. However, XBLAS treats lower
order terms of summation and dot product in a more complicated way than ours
resulting in an increase of flop count of about 40 %. In the same computing time as
XBLAS our algorithms can produce an accurate result for much more ill-conditioned
dot products. For details, see Sections 4 and 5, and for timing and accuracy see
Section 6.

With respect to the result of a summation or dot product algorithm we can grossly
distinguish three different approaches:

i) heuristic/numerical evidence for improvement of result accuracy,
ii) result accuracy as if computed in higher precision,
iii) result with prescribed accuracy.

Algorithms of the second class are backward stable in the sense of (1.2) with respect
to a certain eps, whereas algorithms of the third class are forward stable in a similar
sense. Our methods belong to the second class and, with small modifications described
below, to the third class. To our knowledge all known methods belonging to the second
or third class except the new XBLAS approach [26] bear one or more of the following
disadvantages:

• sorting of input data is necessary, either
i) by absolute value or,
ii) by exponent,

• the inner loop contains branches,
• besides working precision, some extra (higher) precision is necessary,
• access to mantissa and/or exponent is necessary.

Each of those properties may slow down the performance significantly and/or
restrict application to specific computers or compilers. In contrast, our approach
uses only floating point addition, subtraction and multiplication in working precision
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without any of those disadvantages.

1.2. Our goal. We will present algorithms for summation and dot product with-
out branch using only one working precision to compute a result s of the same quality
as if computed in K-fold precision and rounded to working precision. This means
the following.

Let floating point numbers pi, 1 ≤ i ≤ n, with t-bit precision be given. We call
that working precision. Then the result s shall satisfy

|s−
n∑

i=1

pi| ≤ eps|s|+ (ϕeps)K
n∑

i=1

|pi|,(1.4)

with a moderate constant ϕ and eps := 2−t. The second term in the right hand side
of (1.4) reflects computation K-fold precision, and the first one rounding back into
working precision.

1.3. Our approach. Our methods are based on iterative application of error-
free transformations. This has been done before, Shewchuk for example uses such a
scheme for sorted input data to produce nonzero-overlapping sequences [41].

We extend the error-free transformation of two floating point numbers to vectors
of arbitrary length (Algorithm 4.3, VecSum) and use it to compute a result as if
computed in twice the working precision. Then we show that iterative (K-1)-fold
application of VecSum can be used to produce a result as if computed in K-fold
working precision (Algorithm 4.8, SumK).

Furthermore, Dekker and Veltkamp [10] gave an error-free transformation of the
product into the sum of two floating point numbers. We use this to create dot product
algorithms with similar properties as our summation algorithms.

Moreover, we give simple criteria to check the accuracy of the result. This check is
also performed in working precision and in rounding to nearest. Nevertheless it allows
to compute valid error bounds for the result of a summation and of a dot product.

The structure of our algorithms is clear and simple. Moreover, the error-free trans-
formations allow elegant error estimations diminishing involved battles with rounding
error terms to a minimum. All error analysis is due to the second author.

1.4. Outline of the paper. The paper is organized as follows. After introduc-
ing notation we briefly summarize the algorithms for error-free summation and dot
product of two floating point numbers and their properties. In Section 4 we present
and analyze our algorithms for summation corresponding to 2-fold (i.e. doubled) and
to K-fold working precision, and in the next section we do the same for the dot
product. In Section 6 numerical examples for extremely ill-conditioned problems are
presented, as well as timing, accuracy, comparison with other algorithms and some
remarks on practical applications. In the concluding remarks we address possible
implications for the design of the hardware of digital computers.

2. Notation. Throughout the paper we assume a floating point arithmetic ad-
hering to IEEE 754 floating point standard [2]. We assume that no overflow occurs,
but allow underflow. We will use only one working precision for floating point com-
putations. If this working precision is IEEE 754 double precision, this corresponds to
53 bits precision including an implicit bit. The set of working precision floating point
numbers is denoted by F, the relative rounding error unit by eps, and the underflow
unit by eta. For IEEE 754 double precision we have eps = 2−53 and eta = 2−1074.
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We stress that IEEE 754 arithmetic is not necessary if the error-free transforma-
tions TwoSum and TwoProduct to be described in the next section are available.

We denote by fl(·) the result of a floating point computation, where all operations
inside the parentheses are executed in working precision. If the order of execution is
ambiguous and is crucial, we make it unique by using parentheses. Floating point
operations according to IEEE 754 satisfy [15]

fl(a ◦ b) = (a ◦ b)(1 + ε1)
= (a ◦ b)/(1 + ε2)

for ◦ ∈ {+,−} and |εν | ≤ eps,

and

fl(a ◦ b) = (a ◦ b)(1 + ε1) + η1

= (a ◦ b)/(1 + ε2) + η2
for ◦ ∈ {·, /} and |εν | ≤ eps, |ην | ≤ eta.

Addition and subtraction is exact in case of underflow [13], and ε1η1 = ε2η2 = 0 for
multiplication and division. This implies

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b|
|a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ ∈ {+,−},(2.1)

and

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b|+ eta
|a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)|+ eta

for ◦ ∈ {·, /}(2.2)

for all floating point numbers a, b ∈ F, the latter because ε1η1 = ε2η2 = 0. Note that
a ◦ b ∈ R and fl(a ◦ b) ∈ F, but in general a ◦ b /∈ F. It is known [29, 10, 7, 8] that the
approximation error of floating point operations is itself a floating point number:

x = fl(a± b) ⇒ a± b = x + y for y ∈ F,
x = fl(a · b) ⇒ a · b = x + y for y ∈ F,

(2.3)

where no underflow is assumed for multiplication. Similar facts hold for division and
square root but are not needed in this paper. These are error-free transformations
of the pair (a, b) into (x, y), where x is the result of the corresponding floating point
operation. Note that no information is lost; the equalities in (2.3) are mathematical
identities for all floating point numbers a, b ∈ F.

Throughout the paper the number of flops of an algorithm denotes the num-
ber of floating point operations counting additions, subtractions, multiplications and
absolute value separately.

We use standard notation and standard results for our error estimations. The
quantities γn are defined as usual [15] by

γn :=
neps

1− neps
for n ∈ N.

When using γn, we implicitly assume neps < 1. For example, for floating point
numbers ai ∈ F, 1 ≤ i ≤ n, this implies [15, Lemma 8.4]

a = fl

(
n∑

i=1

ai

)
⇒ |a−

n∑

i=1

ai| ≤ γn−1

n∑

i=1

|ai|.(2.4)

Note that this result holds independent of the order of the floating point summation
and also in the presence of underflow. We mention that we are sometimes a little
generous with our estimates, for example, replacing γ4n−2 by γ4n, or an assumption
2(n− 1)eps < 1 by 2neps < 1 to make formulas a little smoother.
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3. Error-free transformations. Our goal is to extend the error-free transfor-
mations for the sum and product of two floating point numbers to vector sums and
to dot products. Therefore, (2.3) will play a fundamental role in the following. For-
tunately, the quantities x, y are effectively computable, without branches and only
using ordinary floating point addition, subtraction and multiplication. For addition
we will use the following algorithm by Knuth [23].

Algorithm 3.1. Error-free transformation of the sum of two floating point
numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

We use Matlab-like [43] notation. Algorithm 3.1 transforms two input floating point
numbers a, b into two output floating point numbers x, y such that [23]

a + b = x + y and x = fl(a + b).(3.1)

The proof for that [23] is also valid in the presence of underflow since addition
and subtraction is exact in this case.

The multiplication routine needs to split the input arguments into two parts. For
the number t given by eps = 2−t, we define s := dt/2e; in IEEE 754 double precision
we have t = 53 and s = 27. The following algorithm by Dekker [10] splits a floating
point number a ∈ F into two parts x, y, where both parts have at most s− 1 nonzero
bits. In a practical implementation, “factor” can be replaced by a constant.

Algorithm 3.2. Error-free splitting of a floating point number into two parts.

function [x, y] = Split(a)
c = fl(factor · a) % factor = 2s + 1
x = fl(c− (c− a))
y = fl(a− x)

It seems absurd that a 53-bit number can be split into two 26-bit numbers. However,
the trick is that Dekker uses one sign bit in the splitting. Note also that no access to
mantissa or exponent of the input “a” is necessary, standard floating point operations
suffice.

The multiplication to calculate “c” in Algorithm 3.2 cannot cause underflow ex-
cept when the input “a” is deep in the gradual underflow range. Since addition and
subtraction is exact in case of underflow, the analysis [10] of Split is still valid and
we obtain

a = x + y and x and y nonoverlapping with |y| ≤ |x|.
With this the following multiplication routine by G.W. Veltkamp (see [10]) can

be formulated.
Algorithm 3.3. Error-free transformation of the product of two floating point

numbers.

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))



8 T. OGITA, S. M. RUMP AND S. OISHI

Note again that no branches, only basic and well optimizable sequences of floating
point operations are necessary. In case no underflow occurs, we know [10] that

a · b = x + y and x = fl(a · b).

In case of underflow of any of the five multiplications in Algorithm 3.3, suppose the
algorithm is performed in a floating point arithmetic with the same length of mantissa
but an exponent range so large that no underflow occurs. Denote the results by x′

and y′. Then a rudimentary analysis yields |y′−y| ≤ 5eta. We do not aim to improve
on that because underflow is rare and the quantities are almost always negligible.

We can summarize the properties of the algorithms TwoSum and TwoProduct as
follows.

Theorem 3.4. Let a, b ∈ F and denote the results of Algorithm 3.1 (TwoSum) by
x, y. Then, also in the presence of underflow,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|.(3.2)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and denote the results of Algorithm 3.3 (TwoProduct) by x, y. Then,

if no underflow occurs,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|,(3.3)

and in the presence of underflow,

a · b = x + y + 5η, x = fl(a · b), |y| ≤ eps|x|+ 5eta, |y| ≤ eps|a · b|+ 5eta(3.4)

with |η| ≤ eta. The algorithm TwoProduct requires 17 flops.
Proof. The assertions follow by (2.1), (2.2), [23], [10] and the fact that addition

and subtraction is exact in the presence of underflow.
Note that the approximation error y = a · b− x is frequently available inside the

processor, but inaccessible to the user. If this information were directly available, the
computing time of TwoProduct would reduce to 1 flop. Alternatively, TwoProduct
can be rewritten in a simple way if a Fused-Multiply-and-Add operation is available
as in the Intel Itanium and many other processors (cf. [33]). This means that for
a, b, c ∈ F the result of FMA(a, b, c) is the rounded-to-nearest exact result a · b + c ∈ R.
Then Algorithm 3.3 can be replaced by

Algorithm 3.5. Error-free transformation of a product using Fused-Multiply-
and-Add.

function [x, y] = TwoProductFMA(a, b)
x = fl(a · b)
y = FMA(a, b,−x)

This reduces the computing time for the error-free transformation of the product to
2 flops. As FMA is a basic task and useful in many algorithms, we think a round-to-
nearest sum of three floating point numbers is such. Suppose ADD3(a, b, c) is a floating
point number nearest to the exact sum a + b + c ∈ R for a, b, c ∈ F. Then Algorithm
3.1 can be replaced by
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Algorithm 3.6. Error-free transformation of addition using ADD3.

function [x, y] = TwoSumADD3(a, b)
x = fl(a + b)
y = ADD3(a, b,−x)

This reduces the error-free transformation of the addition also to 2 flops. We will
comment on this again in the last section.

4. Summation. Let floating point numbers pi ∈ F, 1 ≤ i ≤ n, be given. In
this section we aim to compute a good approximation of the sum s =

∑
pi. With

Algorithm 3.1 (TwoSum) we have a possibility to add two floating point numbers with
exact error term. So we may try to cascade Algorithm 3.1 and sum up the errors to
improve the result of the ordinary floating point summation fl (

∑
pi).� � �TwoSum TwoSum TwoSum TwoSump1 p2 p3 pn�1 pn�2 �3 �n�2 �n�1 �nq2 q3 qn�1 qn

Fig. 4.1. Cascaded error-free transformation

Each of the boxes in Figure 4.1 represents Algorithm 3.1 (TwoSum), the error-free
summation of two floating point numbers. A cascaded algorithm summing up error
terms is as follows.

Algorithm 4.1. Cascaded summation.

function res = Sum2s(p)
π1 = p1; σ1 = 0;
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = fl(σi−1 + qi)

res = fl(πn + σn)

Algorithm 4.1 is a compensated summation [15]. The well known Kahan-Babuška al-
gorithm [32] is Algorithm 4.1 using FastTwoSum instead of TwoSum . Since the transfor-
mation [πi, qi] = FastTwoSum(πi−1, pi) is only proved to be error-free if |πi−1| ≥ |pi|,
the result of the Kahan-Babuška algorithm is in general of less quality than Algorithm
4.1. Neumaier’s Algorithm IV in [31] improves Kahan-Babuška by ordering |πi−1|,
|pi| before applying FastTwoSum . So it is mathematically identical to Algorithm 4.1
and only slowed down by sorting.

For the error analysis we first note

πn = fl

(
n∑

i=1

pi

)
and σn = fl

(
n∑

i=2

qi

)
(4.1)

which follows by successive application of (3.2). So πn is the result of ordinary floating
point summation in working precision, and σn is the (floating point) sum of the error
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terms. The error-free transformation by each application of TwoSum allows an exact
relation between the input pi, the errors qi and the floating point result πn. We have

πn = πn−1 + pn − qn = πn−2 + pn−1 − qn−1 + pn − qn = π1 +
n∑

i=2

(pi − qi),

so that

s =
n∑

i=1

pi = πn +
n∑

i=2

qi.(4.2)

In other words, without the presence of rounding errors the result “res” of Algorithm
4.1 would be equal to the exact sum s =

∑
pi. We also note the well known fact that

adding up the errors needs not necessarily improve the final result. Consider

p = [1 θ θ2 − θ − θ2 − 1](4.3)

with a floating point number θ ∈ F chosen small enough that fl(1 + θ) = fl(1− θ) = 1
and fl(θ + θ2) = fl(θ − θ2) = θ. Then Table 4.1 shows the intermediate results of
Algorithm 4.1.

Table 4.1
Intermediate results of Algorithm 4.1 for (4.3)

i pi πi qi σi

1 1 1 0
2 θ 1 θ θ
3 θ2 1 θ2 θ
4 −θ 1 −θ 0
5 −θ2 1 −θ2 −θ2

6 −1 0 0 −θ2

The table implies

res = fl(π6 + σ6) = −θ2 whereas π6 = fl
(∑

pi

)
= 0 =

∑
pi = s.

So ordinary summation accidentally produces the exact result zero, whereas Algorithm
4.1 yields res = −θ2. In other words, we cannot necessarily expect improvement of
the accuracy of the result by using Algorithm 4.1 instead of ordinary summation.
However, we can show that the error bound improves significantly. Our algorithms
produce, as we will see, a result as if computed in higher precision. For the proof of
the first corresponding theorem on that we need a technical lemma.

Lemma 4.2. Let floating point numbers β0 ∈ F and bi ∈ F, 1 ≤ i ≤ n, be given.
Suppose the floating point numbers ci, βi ∈ F, 1 ≤ i ≤ n, are computed by the following
loop.

for i = 1 : n
[βi, ci] = TwoSum(βi−1, bi)

Then
n∑

i=1

|ci| ≤ γn−1

n∑

i=1

|bi| for β0 = 0,(4.4)
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and
n∑

i=1

|ci| ≤ γn

(
|β0|+

n∑

i=1

|bi|
)

for general β0 ∈ F.(4.5)

Proof. The second inequality (4.5) is an immediate consequence of the first one
(4.4), so we assume β0 = 0. For later use we state

γn−1 + eps(1 + γn) ≤ (n− 1)eps
1− neps

+
eps

1− neps
= γn.(4.6)

We proceed by induction and note that for n = 1 we have β1 = b1 and c1 = 0.
Suppose (4.4) is true for some n ≥ 1. Then

βn+1 = fl

(
n+1∑

i=1

bi

)
,

and (3.2) and (2.4) imply

|cn+1| ≤ eps|βn+1| ≤ eps(1 + γn)
n+1∑

i=1

|bi|.

Using the induction hypothesis and (4.6) yields

n+1∑

i=1

|ci| ≤ γn−1

n∑

i=1

|bi|+ eps(1 + γn)
n+1∑

i=1

|bi| ≤ γn

n+1∑

i=1

|bi|.

Before analyzing Algorithm 4.1 (TwoSum), we stress that it can be viewed as an
error-free vector transformation: The n-vector p is transformed into the n-vector
[q2...n πn] with properties similar to (3.1):

i)
n∑

i=1

pi =
n∑

i=2

qi + πn = s

ii) πn = fl
(

n∑
i=1

pi

)
.

(4.7)

To underline this, we rewrite the first part of Algorithm 4.1 so that the vector entries
are overwritten. This results in the following compact notation.

Algorithm 4.3. Error-free vector transformation for summation.

function p = VecSum(p)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)

The vector p is transformed without changing the sum, and pn is replaced by fl (
∑

pi).
Kahan [21] calls this a “distillation algorithm”. The following algorithm is equivalent
to Algorithm 4.1, the results “res” are identical.

Algorithm 4.4. Cascaded summation equivalent to Algorithm 4.1.

function res = Sum2(p)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)

res = fl
((

n−1∑
i=1

pi

)
+ pn

)
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Proposition 4.5. Suppose Algorithm 4.4 (Sum2) is applied to floating point
numbers pi ∈ F, 1 ≤ i ≤ n, set s :=

∑
pi ∈ R and S :=

∑ |pi| and suppose neps < 1.
Then, also in the presence of underflow,

|res− s| ≤ eps|s|+ γ2
n−1S.(4.8)

Algorithm 4.4 requires 7(n− 1) flops. If Algorithm 3.6 (TwoSumADD3) is used instead
of Algorithm 3.1 (TwoSum), then Algorithm 4.4 requires 3(n− 1) flops.

Remark 1. The final result “res” is calculated as a floating point sum in the
last line of Algorithm 4.4 or, equivalently, in Algorithm 4.1. The exact result “s” is,
in general, not a floating point number. Therefore we cannot expect an error bound
(4.8) better than eps|s|. Besides that, the error bound (4.8) tells that the quality
of the result “res” is as if computed in doubled working precision and rounded to
working precision.

Remark 2. The important point in the analysis is the estimation of the er-
ror of the final summation fl(πn + σn). A straightforward analysis includes a term
eps|πn|, for which the only bound we know is epsS. This, of course, would ruin the
whole analysis. Instead, we can use the mathematical property (4.2) of the error-free
transformation TwoSum implying that πn +

∑
qi − s is equal to zero.

Remark 3. It is very instructive to express and interpret (4.8) in terms of the
condition number of summation. The latter is defined for

∑
pi 6= 0 by

cond
(∑

pi

)
:= lim

ε→0
sup

{∣∣∣∣
∑

p̃i −
∑

pi

ε
∑

pi

∣∣∣∣ : |p̃| ≤ ε|p|
}

,

where absolute value and comparison is to be understood componentwise. Obviously

cond
(∑

pi

)
=

∑ |pi|
|∑ pi| =

S

|s| .(4.9)

Inserting this into (4.8) yields

|res− s|
|s| ≤ eps + γ2

n−1 · cond
(∑

pi

)
.

In other words, the bound for the relative error of the result “res” is essentially
(neps)2 times the condition number plus the inevitable summand eps for rounding
the result to working precision.

Remark 4. Neumaier’s [31] proves for his mathematically identical Algorithm
IV the similar estimation

|res− s| ≤ eps|s|+ (0.75n2 + n)eps2S ,

provided 3neps ≤ 1. His proof is involved.
Proof of Proposition 4.5. For the analysis of Algorithm 4.4 we use the equivalent

formulation Algorithm 4.1. In the notation of Algorithm 4.1 we know by (4.4)

n∑

i=2

|qi| ≤ γn−1

n∑

i=1

|pi| = γn−1S.(4.10)
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Then σn = fl (
∑n

i=2 qi) and (2.4) imply

|σn −
n∑

i=2

qi| ≤ γn−2

n∑

i=2

|qi| ≤ γn−2γn−1S.(4.11)

Furthermore, res = fl(πn + σn) means res = (1 + ε)(πn + σn) with |ε| ≤ eps, so that
in view of (4.2),

|res− s| = |fl(πn + σn)− s| = |(1 + ε)(πn + σn − s) + εs|
= |(1 + ε)(πn +

n∑
2

qi − s) + (1 + ε)(σn −
n∑

i=2

qi) + εs|

≤ (1 + eps)|σn −
n∑

i=2

qi|+ eps|s|
≤ (1 + eps)γn−2γn−1S + eps|s|,

(4.12)

and the result follows by (1 + eps)γn−2 ≤ γn−1.
The high precision summation in XBLAS [26] is fairly similar to Algorithm 4.4

except that lower order terms are treated a different way. The corresponding algorithm
BLAS_dsum_x in [26] is as follows:

Algorithm 4.6. XBLAS quadruple precision summation.

function s = SumXBLAS(p)
s = 0; t = 0;
for i = 1 : n

[t1, t2] = TwoSum(s, pi)
t2 = t2 + t;
[s, t] = FastTwoSum(t1, t2)

Lower order terms are added in SumXBLAS using an extra addition and Algorithm 1.1
(FastTwoSum) to generate a pair [s, t] with s + t approximating

∑
pi in quadruple

precision. Omitting the last statement in Algorithm 4.1 (or equivalently in Algorithm
4.4, Sum2) it follows by (4.7, i)) and (4.11) that the pair [πn, σn] is of quadruple
precision as well. Output of SumXBLAS is the higher order part s which satisfies a
similar error estimate as Sum2. However, XBLAS summation requires 10n flops as
compared to 7(n− 1) flops for Sum2. For timing and accuracy see Section 6.

The error bound (4.8) for the result res of Algorithm 4.4 is not computable since
it involves the exact value s of the sum. Next we show how to compute a valid error
bound in pure floating point in round to nearest, which is also less pessimistic. We
use again the notation of the equivalent Algorithm 4.1. Following (4.12) and (4.11)
we have

|res− s| = |fl(πn + σn)− s| ≤ eps|res|+ |σn + πn − s|
≤ eps|res|+ |

n∑
i=2

qi + πn − s|+ γn−2

n∑
i=1

|qi|

≤ eps|res|+ (1 + eps)n−2γn−2fl(
n∑

i=1

|qi|)
≤ eps|res|+ γ2n−4α ,

where α := fl(
n∑

i=2

|qi|). If meps < 1 for m ∈ N, then fl(meps) = meps ∈ F and

fl(1−meps) = 1−meps ∈ F, so that only division may cause a rounding error in the
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computation of γm = meps/(1−meps). Therefore

γm ≤ (1− eps)−1fl(meps/(1−meps)).

The floating point multiplication fl(eps|res|) may cause underflow, so setting β :=
fl(2neps/(1− 2neps)α) and being a little generous with the lower order terms shows

|res− s| ≤ fl(eps|res|) + (1− eps)4γ2nα + eta
≤ (1− eps)fl(eps|res|) + (1− eps)3fl(2neps/(1− 2neps))α

+ eps · fl(eps|res|) + eta
≤ (1− eps)fl(eps|res|) + (1− eps)2β + fl(eps2|res|) + 2eta
≤ (1− eps)fl(eps|res|) + (1− eps)2β

+ (1− eps)3fl(2eps2|res|) + (1− eps)33eta
≤ (1− eps)fl(eps|res|) + (1− eps)2β

+ (1− eps)2fl
(
2eps2|res|+ 3eta

)
≤ (1− eps)fl(eps|res|) + (1− eps)fl

(
β + (2eps2|res|+ 3eta)

)
≤ fl

(
eps|res|+ (

β + (2eps2|res|+ 3eta)
))

.

The following corollary translates the result into the notation of Algorithm 4.4.
Corollary 4.7. Let floating point numbers pi ∈ F, 1 ≤ i ≤ n, be given. Append

the statements

if 2neps ≥ 1, error(’dimension too large’), end

β = (2neps/(1− 2neps)) ·
(

n−1∑
i=1

|pi|
)

err = eps|res|+ ( β + (2eps2|res|+ 3eta) )

(to be executed in working precision) to Algorithm 4.4 (Sum2). If the error message is
not triggered, err satisfies

res− err ≤
∑

pi ≤ res + err.

This is also true in the presence of underflow. The computation of err requires 2n+8
flops.

For later use we estimate the sum of the absolute values of the transformed vector.
Using (4.2) and (4.10) we obtain

n∑

i=2

|qi|+ |πn| =
n∑

i=2

|qi|+ |s−
n∑

i=2

qi| ≤ |s|+ 2
n∑

i=2

|qi| ≤ |s|+ 2γn−1S.(4.13)

Denoting the output vector of Algorithm 4.3 (VecSum) by p′ this means

n∑

i=1

|p′i| ≤
∣∣∣∣∣

n∑

i=1

pi

∣∣∣∣∣ + 2γn−1

n∑

i=1

|pi|.(4.14)

If summation of the pi is not too ill-conditioned (up to condition number eps−1,
say), the result of Algorithm 4.4 (Sum2) is almost maximally accurate and there is
nothing more to do. Suppose the summation is extremely ill-conditioned with con-
dition number beyond eps−1. Then the vector p is transformed by Sum2 into a new
vector p′ with p′n being the result of ordinary floating point summation in working
precision. Because of ill-condition, p′n is subject to heavy cancellation, so |p′n| is of
the order eps

∑ |pi|. Moreover, (4.14) implies that
∑ |p′i| is so small as well.



ACCURATE SUM AND DOT PRODUCT 15

By (4.9) this means that Sum2 transforms a vector pi being ill-conditioned with
respect to summation into a new vector with identical sum but condition number
improved by about a factor eps. This is the motivation to cascade the error-free
vector transformation. Our algorithm is as follows.

Algorithm 4.8. Summation as in K-fold precision by (K − 1)-fold error-free
vector transformation.

function res = SumK(p,K)
for k = 1 : K − 1

p = VecSum(p)

res = fl
((

n−1∑
i=1

pi

)
+ pn

)

Note that for K = 2, Algorithm 4.8 (SumK) and Algorithm 4.4 (Sum2) are identical.
To analyze the behavior of Algorithm 4.8 denote the input vector p by p(0), and the
vector p after finishing loop k by p(k).

Lemma 4.9. With the above notations set S(k) :=
∑n

i=1 |p(k)
i | for 0 ≤ k ≤ K − 1.

Then the intermediate results of Algorithm 4.8 (SumK) satisfy the following:

i) s :=
n∑

i=1

p
(0)
i =

n∑
i=1

p
(k)
i for 1 ≤ k ≤ K − 1,

ii) |res− s| ≤ eps|s|+ γ2
n−1S

(K−2),

iii) S(k) ≤ 3|s|+ γk
2n−2S

(0) provided 4(n− 1)eps ≤ 1 and 1 ≤ k ≤ K − 1.

Remark. Before we prove this result, consider the scheme in Figure 4.2 explain-
ing the behavior of Algorithm 4.8 for n = 5 and K = 4. For simplicity we replace p

(0)
i

by pi, and denote p
(k)
i by pi with k-fold prime.

p1

p
′

1

p
′′

1

p
′′′

5

p3p2 p4 p5

p
′

2
p
′

3
p
′

4
p
′

5

p
′′

2
p
′′

3
p
′′

5
p
′′

4

p
′′′

1
p
′′′

2
p
′′′

3
p
′′′

4

1

Fig. 4.2. Outline of Algorithm 4.8 for n = 5 and K = 4

Proof of Lemma 4.9. Figure 4.2 illustrates the (K − 1)-fold application of the
main loop of Algorithm 4.3 or, equivalently, the first three lines of Algorithm 4.1.
Therefore, i) follows by successive application of (4.2). Using s =

∑n
i=1 p

(K−2)
i and
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applying Proposition 4.5 yields ii). To prove iii), successive application of (4.14) and
using i) gives

S(2) ≤ |s|+ 2γn−1(|s|+ 2γn−1S
(0))

and

S(k) ≤ |s|
∞∑

i=0

(2γn−1)i + (2γn−1)kS(0)

for 1 ≤ k ≤ K − 1. We have

∞∑

i=0

(2γn−1)i =
1

1− 2(n− 1)eps
1− (n− 1)eps

=
1− (n− 1)eps
1− 3(n− 1)eps

.

If 4(n− 1)eps ≤ 1, then 1− (n− 1)eps ≤ 3(1− 3(n− 1)eps) and

1− (n− 1)eps
1− 3(n− 1)eps

≤ 3 ,

so

S(k) ≤ 3|s|+ (2γn−1)kS(0) .

Using 2γm ≤ γ2m yields iii).
Inserting iii) of Lemma 4.9 into ii) proves the following error estimate for Algo-

rithm 4.8.
Proposition 4.10. Let floating point numbers pi ∈ F, 1 ≤ i ≤ n, be given

and assume 4neps ≤ 1. Then, also in the presence of underflow, the result “res” of
Algorithm 4.8 (SumK) satisfies for K ≥ 3

|res− s| ≤ (eps + 3γ2
n−1)|s|+ γK

2n−2S,

where s :=
∑

pi and S :=
∑ |pi|. Algorithm 4.8 requires (6K − 5)(n − 1) flops. If

Algorithm 3.6 (TwoSumADD3) is used instead of Algorithm 3.1 (TwoSum), then Algorithm
4.8 requires (2K − 1)(n− 1) flops.

We mention that the factors γν in Proposition 4.10 are conservative (see the
computational results in Section 6). Moreover, the term 3γ2

n−1 is negligible compared
to eps. So the result tells that with each new loop on k the error estimate drops by a
factor of size eps, and the final result is of quality as if computed in K-fold precision.
The extra term eps|s| reflects the rounding into working precision. This is the best
we can expect.

Corollary 4.11. Assume 4neps < 1. The result “res” of Algorithm 4.8 (SumK),
also in the presence of underflow, satisfies

|res− s|
|s| ≤ eps + 3γ2

n−1 + γK
2n−2 · cond

(∑
pi

)
.

In other words, the bound for the relative error of the result “res” is essentially
the relative rounding error unit eps plus (ϕeps)K times the condition number for a
moderate factor ϕ.
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Note that Corollary 4.11 illustrates the unusual phenomenon that for very ill-
conditioned input the computed result is more accurate than cond × eps. This is
solely due to the fact that all intermediate transformations TwoSum in SumK are error-
free – although individual operations within TwoSum are afflicted with rounding errors.
The usual heuristic applies only to the last line of Algorithm 4.8 (SumK).

We mention that Algorithm 4.8 can be used to achieve a certain accuracy using
the rigorous error estimate in Corollary 4.7 to determine a suitable value of K.

Algorithm 4.8 (SumK) proceeds through the scheme in Figure 4.2 horizontally.
This bears the advantage that one may continue if the desired accuracy is not yet
achieved. However, a local vector of length n is necessary if the input vector shall not
be overwritten. To overcome this problem, we may as well proceed vertically through
the scheme in Figure 4.2. In this case the number of lines, i.e. K−1, has to be specified
in advance. Note that K is usually very small, so the number of intermediate results
is negligible, only some K values. The final result is exactly the same because all
transformations are error-free!

Algorithm 4.12. Equivalent formulation of Algorithm 4.8 – vertical mode.

function res = SumKvert(p, K)
K = min(K, n)
for i = 1 : K − 1

s = pi

for k = 1 : i− 1
[qk, s] = TwoSum(qk, s)

end
qi = s

end
for i = K : n

α = pi

for k = 1 : K − 1
[qk, α] = TwoSum(qk, α)

end
s = s + α

end
for j = 1 : K − 2

α = qj

for k = j + 1 : K − 1
[qk, α] = TwoSum(qk, α)

end
s = s + α

end
res = s + qK−1

The algorithm divides into three parts, the initialization (leading upper triangle), the
main part of the loop and the final lower triangle in Figure 4.2.

5. Dot product. With Algorithm 3.3 (or Algorithm 3.5) we already have an
error-free transformation of the product of two floating point numbers into the sum
of two floating point numbers. Combining this with our summation algorithms yields
a first algorithm for the computation of the dot product of two n-vectors x, y.
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Algorithm 5.1. A first dot product algorithm.

for i = 1 : n
[ri, rn+i] = TwoProduct(xi, yi)

res = SumK(r,K)

For the moment we assume that no underflow occurs. Then,
∑2n

i=1 ri = xT y. With
these preliminaries and noting that the vector r has 2n elements we can easily analyze
Algorithm 5.1.

Theorem 5.2. Let xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res ∈ F the
result of Algorithm 5.1. Assume 4neps < 1. Then for K ≥ 2 and without the presence
of underflow,

|res− xT y| ≤ (eps + 3γ2
2n−1)|xT y|+ γK

4n|xT | |y|.
Algorithm 5.1 requires 6K(2n− 1)+ 7n+5 or less than (12K +7)n flops. For K = 2
these are 31n− 7 flops. If TwoSumADD3 and TwoProductFMA is used instead of TwoSum
and TwoProduct, respectively, then Algorithm 5.1 requires 2K(2n−1)+1 flops, which
are 8n− 3 flops for K = 2.

Proof. In view of Proposition 4.10, (3.3) and
∑2n

i=1 ri = xT y we only need to
estimate S :=

∑2n
i=1 |ri|. By (3.3),

2n∑

i=1

|ri| ≤
n∑

i=1

|fl(xiyi)|+ eps
n∑

i=1

|xiyi| ≤ (1 + 2eps)|xT | |y|,

so that Proposition 4.10 yields

|res− xT y| =
∣∣res−

2n∑

i=1

ri

∣∣

≤ (eps + 3γ2
2n−1)|xT y|+ γK

4n−2(1 + 2eps)|xT | |y|
≤ (eps + 3γ2

2n−1)|xT y|+ γK
4n|xT | |y|.

In the following we will improve Algorithm 5.1 first for K = 2, and then for
general K ≥ 3.

The most frequently used application of an improved dot product is the compu-
tation in doubled working precision, corresponding to K = 2 in Algorithm 5.1. In this
case the remainders rn+i are small compared to ri, and we can improve the perfor-
mance by adding those remainders in working precision instead of using TwoSum. This
reduces the number of flops from 31n to 25n. Furthermore we will obtain an improved
error estimate in Proposition 5.5 and especially Corollary 5.7, most beautiful and the
best we can expect. Our algorithm for K = 2 corresponding to a result as if computed
in twice the working precision is as follows.

Algorithm 5.3. Dot product in twice the working precision.

function res = Dot2(x, y)
[p, s] = TwoProduct(x1, y1)
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
s = fl(s + (q + r))

res = fl(p + s)
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An inspection yields

p = fl(xT y),

so that the final result “res” of Algorithm 5.3 is the ordinary floating point result p of
the dot product plus the summed up error terms s. If there is not much cancellation
in xT y, then the approximation p is dominant, whereas the error term s takes over
for an ill-conditioned dot product. For the analysis we rewrite Algorithm 5.3 into the
following equivalent one.

Algorithm 5.4. Equivalent formulation of Algorithm 5.3.

function res = Dot2s(x, y)
[p1, s1] = TwoProduct(x1, y1)
for i = 2 : n

[hi, ri] = TwoProduct(xi, yi)
[pi, qi] = TwoSum(pi−1, hi)
si = fl(si−1 + (qi + ri))

res = fl(pn + sn)

For the analysis of Algorithm 5.4 (and therefore of Algorithm 5.3), for the moment
still assuming no underflow occurred, we collect some facts about the intermediate
results. By (3.3) we have for i ≥ 2,

qi + ri = (pi−1 + hi − pi) + (xiyi − hi) = xiyi + pi−1 − pi,

and therefore

s1 +
n∑

i=2

(qi + ri) = (x1y1 − p1) +

(
n∑

i=2

xiyi + p1 − pn

)
= xT y − pn.(5.1)

Applying (3.3), Lemma 4.2 and again (3.3) yields

|s1| ≤ eps|x1y1|,
n∑

i=2

|qi| ≤ γn−1(|p1|+
n∑

i=2

|hi|) = γn−1

n∑
i=1

|fl(xiyi)| ≤ (1 + eps)γn−1|xT | |y|,
n∑

i=2

|ri| ≤ eps
n∑

i=2

|xiyi|,

and with

eps + (1 + eps)γn−1 = eps +
(1 + eps)(n− 1)eps

1− (n− 1)eps
=

neps

1− (n− 1)eps

we obtain

|s1|+
n∑

i=2

|qi|+
n∑

i=2

|ri| ≤ eps|xT | |y|+ (1 + eps)γn−1|xT | |y|
=

neps

1− (n− 1)eps
|xT | |y|.

(5.2)

For later use we apply (5.1) to obtain

|pn| =
∣∣xT y − s1 −

n∑

i=2

(qi + ri)
∣∣ ≤ |xT y|+ |s1|+

n∑

i=2

|qi|+
n∑

i=2

|ri|
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and using (5.2),

|s1|+
n∑

i=2

|ri|+
n∑

i=2

|qi|+ |pn| ≤ |xT y|+ 2
(
|s1|+

n∑
i=2

|qi|+
n∑

i=2

|ri|
)

≤ |xT y|+ γ2n|xT | |y|.
(5.3)

It follows by (5.1), Algorithm 5.4 and (5.2),

|(xT y − pn)− sn| =
∣∣∣∣∣s1 +

n∑

i=2

(qi + ri)− fl

(
s1 +

n∑

i=2

(qi + ri)

)∣∣∣∣∣

≤ γn−1

(
|s1|+

n∑

i=2

|fl(qi + ri)|
)

(5.4)

≤ γn

(
|s1|+

n∑

i=2

|qi + ri|
)

≤ γn
neps

1− (n− 1)eps
|xT | |y|,

and finally

1 + eps

1− (n− 1)eps
≤ 1

1− neps
⇒ (1 + eps)

neps

1− (n− 1)eps
≤ γn

yields for some |ε| ≤ eps,

|res− xT y| = |(1 + ε)(pn + sn)− xT y|
= |εxT y + (1 + ε)(pn + sn − xT y)|
≤ eps|xT y|+ (1 + eps)γn

neps

1− (n− 1)eps
|xT | |y|

≤ eps|xT y|+ γ2
n|xT | |y|.

(5.5)

Our analysis is easily adapted to the presence of underflow. The main point is that,
due to Theorem 3.4 and (5.1), the transformation of xT y into s1 +

∑n
i=2(qi + ri)+ pn

is error-free if no underflow occurs. But our analysis is only based on the latter sum,
so that in the presence of underflow Theorem 3.4 tells that the difference between
xT y and s1 +

∑n
i=2(qi + ri) + pn is at most 5neta. We proved the following result.

Proposition 5.5. Let xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res ∈ F the
result computed by Algorithm 5.3 (Dot2). Assume neps < 1. Then, if no underflow
occurs,

|res− xT y| ≤ eps|xT y|+ γ2
n|xT | |y|,

and, in the presence of underflow,

|res− xT y| ≤ eps|xT y|+ γ2
n|xT | |y| + 5neta.(5.6)

Algorithm 5.3 requires 25n − 7 flops. If TwoSumADD3 and TwoProductFMA is used
instead of TwoSum and TwoProduct, respectively, then Algorithm 5.3 requires 6n − 3
flops.

We mention that if TwoSumADD3 is available, then the second last line of Algorithm
5.3 can be replaced by s = ADD3(s, q, r), thus improving the error estimate slightly.
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The first part of our algorithm is similar to BLAS_ddot_x in XBLAS [26], which in
turn is based on Bailey’s double-double precision arithmetic [5, 4]. As for summation,
the low order parts are treated differently from Dot2 :

Algorithm 5.6. XBLAS quadruple precision dot product.

function s = DotXBLAS(x, y)
s = 0; t = 0
for i = 1 : n

[h, r] = TwoProduct(xi, yi)
[s1, s2] = TwoSum(s, h)
[t1, t2] = TwoSum(t, r)
s2 = s2 + t1
[t1, s2] = FastTwoSum(s1, s2)
t2 = t2 + s2

[s, t] = FastTwoSum(t1, t2)

Algorithm DotXBLAS includes the pair [s, t] with s+t approximating xT y in quadruple
precision. Omitting the last statement in Algorithm 5.3 (Dot2) it follows by (5.4) that
the final pair [p, s] in Dot2 is of quadruple precision as well. The output of DotXBLAS
is the higher order part s. The error analysis in [26, (10)] relates |s − xT y| to some
internal precision and to the computed approximation s rather than to xT y as in (5.6).
An error estimation for DotXBLAS similar to (5.6) might contain something of the order
neps2 instead of γ2

n due to the different treatment of the lower order terms. If this
is true, the error estimate would improve over (5.6) for condition numbers exceeding
eps−1. We did not attempt to prove such an error estimate, but numerical results
seem to indicate this behavior. However, XBLAS dot product requires 37n flops as
compared to 25n flops for (Dot2). This is confirmed by the measured computing times
(see Section 6).

As we will see in a moment, our Algorithm 5.10 (DotK) for K=3 requires the
same computing time 37n flops as the XBLAS dot product but delivers a result as if
computed in tripled working precision and rounded back into working precision. For
IEEE 754 double precision this means DotK calculates accurate results for condition
numbers up to some 1048 rather than 1032.

Again it is very instructive to express and interpret our result in terms of the
condition number of the dot product. One defines for xT y 6= 0,

cond (xT y) := lim
ε→0

sup
{∣∣∣∣

(x + ∆x)T (y + ∆y)− xT y

εxT y

∣∣∣∣ : |∆x| ≤ ε|x|, |∆y| ≤ ε|y|
}

,

where absolute value and comparison is to be understood componentwise. A standard
computation yields

cond (xT y) = 2
|xT | |y|
|xT y| .(5.7)

Combining this with the estimation in Proposition 5.5 gives the following result.
Corollary 5.7. Let xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res ∈ F the

result computed by Algorithm 5.3 (Dot2). Assume neps < 1. Then, if no underflow
occurs,

∣∣∣∣
res− xT y

xT y

∣∣∣∣ ≤ eps +
1
2
γ2

ncond (xT y) .(5.8)
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We think this is a most beautiful result. It tells that the relative error of the result
of Algorithm 5.3 is not more than a moderate factor times eps2 times the condition
number plus the relative rounding error unit eps. This is the best we can expect
for a result computed in twice the working precision and rounded back into working
precision. The factor γ2

n is mainly due to (2.4) which is known to be pessimistic. This
will be confirmed in our computational results in Section 6.

The following algorithm computes an error bound for the dot product in pure
floating point. We will prove the error bound to be rigorous, also in the presence of
underflow.

Algorithm 5.8. Dot product in twice the working precision with error bound
including underflow.

function [res, err] = Dot2Err(x, y)
if 2neps ≥ 1, error(’inclusion failed’), end
[p, s] = TwoProduct(x1, y1)
e = |s|
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
t = fl(q + r)
s = fl(s + t)
e = fl(e + |t|)

res = fl(p + s)
δ = fl((neps)/(1− 2neps))
α = fl(eps|res|+ (δe + 3eta/eps))
err = fl(α/(1− 2eps))

For the proof of validity we use the computed quantities e, res, δ, α and err of Algo-
rithm 5.8 after execution of the last statement. First note that the quantity in (5.4)
is estimated by

γn−1

(
|s1|+

n∑

i=2

|fl(qi + ri)|
)
≤ (1 + eps)n−1γn−1fl

(
|s1|+

n∑

i=2

|qi + ri|
)

≤ (n− 1)eps
1− (2n− 2)eps

e .

Taking underflow into account and using res = fl(p + s) it follows

|xT y − res| ≤ eps|res|+ |xT y − p− s|+ 5neta

≤ fl(eps|res|) +
(n− 1)eps

1− (2n− 2)eps
e + (5n + 1)eta

=: fl(eps|res|) + ∆.

(5.9)

Furthermore,

(n− 1)eps
1− (2n− 2)eps

≤ (1 + eps)−3 neps

1− 2neps
≤ (1 + eps)−2δ



ACCURATE SUM AND DOT PRODUCT 23

and, using 2neps < 1 and regarding possible underflow,

∆ ≤ (1 + eps)−2δe + (5n + 1)eta
≤ (1 + eps)−1fl(δe) + (5n + 2)eta
≤ (1 + eps)−1 (fl(δe) + 3eta/eps)
≤ fl(δe + 3eta/eps).

Finally, (5.9) yields

|xT y − res| ≤ fl(eps|res|) + fl(δe + 3eta/eps) ≤ (1− eps)−1α

≤ (1− eps)α/(1− 2eps) ≤ fl(α/(1− 2eps)) = err,

and proves the following result.
Corollary 5.9. Let xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res, err ∈ F

the results computed by Algorithm 5.8 (Dot2Err). If Algorithm 5.8 runs to completion,
then, also in the presence of underflow,

res− err ≤ xT y ≤ res + err.

Algorithm 5.8 requires 27n+4 flops, where taking the absolute value is counted as one
flop. If instructions ADD3 and FMA are available, then Algorithm 5.8 can be executed
in 8n + 8 flops.

The trick is to move all underflow related constants into eta/eps, the smallest
positive normalized floating point number, which vanishes when added to δe except
in pathological situations.

Our final step is to extend the idea of the previous algorithm for doubled working
precision to higher precision by applying our summation Algorithm 4.8 (SumK).

Algorithm 5.10. Dot product algorithm in K-fold working precision, K ≥ 3.

function res = DotK(x, y,K)
[p, r1] = TwoProduct(x1, y1)
for i = 2 : n

[h, ri] = TwoProduct(xi, yi)
[p, rn+i−1] = TwoSum(p, h)

r2n = p
res = SumK(r,K − 1)

The call of Algorithm 4.8 (SumK) in the last line of Algorithm 5.10 may be replaced by
the equivalent Algorithm 4.12 (SumKvert, vertical mode). With our previous results
the analysis is not difficult. The error-free transformations TwoProduct (without
underflow) and TwoSum yield

s :=
2n∑

i=1

ri = xT y.

To apply Proposition 4.10 we need to estimate S :=
∑2n

i=1 |ri|. But this is nothing
else than the quantity on the left hand side of (5.3). Inserting this into Proposition
4.10, using 2γm ≤ γ2m and noting that the vector r is of length 2n yields

|res− xT y| ≤ (eps + 3γ2
2n−1)|xT y|+ γK−1

4n−2(|xT y|+ γ2n|xT | |y|)
= (eps + 3γ2

2n−1 + γK−1
4n−2)|xT y|+ γ2nγK−1

4n−2|xT | |y|
≤ (eps +

3
4
γ2
4n−2 + γK−1

4n−2)|xT y|+ γK
4n−2|xT | |y|.
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If 4(2n− 1)eps ≤ 1, then γ4n−2 ≤ 1 and

|res− xT y| ≤ (eps + 2γ2
4n−2)|xT y|+ γK

4n−2|xT | |y|.(5.10)

The analysis in the presence of underflow is again based on the fact that the only
additional error can occur in the initial transformation of the dot product xT y by the
n calls of TwoProduct. So (5.10) and Theorem 3.4 prove the following result.

Proposition 5.11. Let xi, yi ∈ F, 1 ≤ i ≤ n, be given and assume 8neps ≤ 1.
Denote by res ∈ F the result of Algorithm 5.10 (DotK). Then, in case no underflow
occurs,

|res− xT y| ≤ (eps + 2γ2
4n−2)|xT y|+ γK

4n−2|xT | |y|

and
∣∣∣∣
res− xT y

xT y

∣∣∣∣ ≤ eps + 2γ2
4n−2 +

1
2
γK
4n−2cond (xT y).(5.11)

In the presence of underflow,

|res− xT y| ≤ (eps + 2γ2
4n−2)|xT y|+ γK

4n−2|xT | |y|+ 5neta.

Algorithm 5.10 requires 6K(2n − 1) + n + 5 or less than (12K + 1)n flops. If
Algorithms 3.6 (TwoSumADD3) and 3.5 (TwoProductFMA) are used instead of Algo-
rithms 3.1 (TwoSum) and 3.3 (TwoProduct), respectively, then Algorithm 5.10 requires
(2K + 1)(2n− 1) flops.

The term 2γ2
4n−2 is negligible against eps. So, as before, this means that the

relative error of the result is essentially the relative rounding error unit eps plus a
moderate factor times eps to the K-th power times the condition number. This is
again the best we can expect of a computation in K-fold working precision.

Note that Algorithm 5.10 improves the computing time of Algorithm 5.1 from
about (12K + 7)n to (12K + 1)n flops, whilst satisfying the same error estimate.

6. Numerical results. In this section we present timing and accuracy results.
We compare our summation algorithms to ordinary summation, Kahan-Babuška,
XBLAS and Anderson’s algorithm, and our dot product algorithms to BLAS and
XBLAS. All timing was done in Fortran by the first author; some accuracy measure-
ments were done in Matlab. All calculations in this section are performed in IEEE
754 double precision as working precision corresponding to about 16 decimal digits.

We will not say much about the many practical applications of our algorithms
because i) this is widely known, and ii) there are excellent treatments in the recent
literature [15, 26]. In the latter, for example, the second chapter consists of sections on
“Iterative Refinement of Linear Systems and Least Squares Problems”, on “Avoiding
Pivoting in Sparse Gaussian Elimination”, on “Accelerating Iterative Methods for
Ax = b, like GMRES”, on “Using Normal Equations Instead of QR for Least Squares”,
on “Solving Ill-Conditioned Triangular Systems”, on “Eigenvalues and Eigenvectors of
Symmetric Matrices” with detailed discussion of the numerical properties and effects
and advantages of the use of more accurate dot products (in this case doubled working
precision). Everything said over there applies to any algorithm calculating the value
of a dot product in doubled working precision, regardless of the method in use, so it
applies to our Algorithm 5.3 (Dot2) and, mutatis mutandis, to the higher precision
Algorithm 5.10.
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To test our algorithms we need extremely ill-conditioned dot products, and a
problem is to generate vectors x, y with floating point entries causing hundreds of bits
cancellation. Ill-conditioned sums of length 2n are generated from dot products of
length n using Algorithm 3.3 (TwoProduct) and randomly permuting the summands.

For ill-conditioned dot products we designed the following Algorithm 6.1 (GenDot)
to generate vectors x, y with anticipated condition number c. We put some effort into
this routine to make sure that the vectors are general, not following obvious patterns.

Algorithm 6.1. Generation of extremely ill-conditioned dot products.

function [x,y,d,C] = GenDot(n,c)

%

%input n dimension of vectors x,y, n>=6

% c anticipated condition number of x’*y

%output x,y generated vectors

% d dot product x’*y rounded to nearest

% C actual condition number of x’*y

%

%uses r=DotExact(x,y) calculating a floating point number r nearest to x’*y

%

n2 = round(n/2); % initialization

x = zeros(n,1);

y = x;

b = log2(c);

e = round(rand(n2,1)*b/2); % e vector of exponents between 0 and b/2

e(1) = round(b/2)+1; % make sure exponents b/2 and

e(end) = 0; % 0 actually occur in e

x(1:n2) = (2*rand(n2,1)-1).*(2.^e); % generate first half of vectors x,y

y(1:n2) = (2*rand(n2,1)-1).*(2.^e);

% for i=n2+1:n and v=1:i, generate x_i, y_i such that (*) x(v)’*y(v) ~ 2^e(i-n2)

e = round(linspace(b/2,0,n-n2)); % generate exponents for second half

for i=n2+1:n

x(i) = (2*rand-1)*2^e(i-n2); % x_i random with generated exponent

y(i) = ((2*rand-1)*2^e(i-n2)-DotExact(x’,y))/x(i); % y_i according to (*)

end

index = randperm(n); % generate random permutation for x,y

x = x(index); % permute x and y

y = y(index);

d = DotExact(x’,y); % the true dot product rounded to nearest

C = 2*(abs(x’)*abs(y))/abs(d); % the actual condition number

Algorithm 6.1 is executable Matlab [43] code. The only assumption is availabil-
ity of a routine DotExact such that for floating point vectors x, y ∈ Fn the call
r=DotExact(x,y) produces a floating point number r ∈ F near to the exact value
of the dot product xT y ∈ R. Since the exponent range of double precision floating
point numbers is limited, such a routine is easily written using some high accuracy
floating point arithmetic (cf., for example, [12], Section 2.1.1). Algorithm 5.10 (DotK)
for suitably chosen K can be used as well.

Algorithm 6.1 (GenDot) works as follows. The condition number (5.7) of the dot
product xT y is proportional to the degree of cancellation. In order to achieve a pre-
scribed cancellation, we generate the first half of the vectors x and y randomly within
a large exponent range. This range is chosen according to the anticipated condition
number. The second half of x and y is then constructed choosing xi randomly with
decreasing exponent, and calculating yi such that some cancellation occurs. Finally,
we permute the vectors x, y randomly and calculate the achieved condition number.

We first show the performance of our “random” generator for ill-conditioned dot
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products. For the following Table 6.1 we generated 50000 test vectors of lengths
varying between 100 and 500 and with condition number varying between 1 and 10100.
We display the minimum, maximum, average (arithmetic mean) and median of the
achieved divided by the anticipated condition number. Together with the median we
give the median absolute deviation in parenthesis. The median absolute deviation of
a vector x is the median of the vector |x−median(x)|. In [30] this measure is called
robust and the ‘best of an inferior lot’.

Table 6.1
Ratio of achieved and anticipated condition number by GenDot

minimum maximum average median
1.5 · 10−3 1.9 · 106 99.4 10.0 (7.1)

So in general the actual condition number is a little larger than the anticipated
one with quite some variation. However, this is unimportant because in the following
figures we plot the relative error against the actually achieved condition number.

Next we display timing and accuracy of the summation algorithms DSum (ordi-
nary recursive summation), Kahan-Babuška algorithm [32], Sum2 (Algorithm 4.1),
SumXBLAS (XBLAS Algorithm 4.6, BLAS_dsum_x), Sum3 (Algorithm 4.8, SumK for
K=3) and Anderson algorithm [1]. First we display the accuracy in Table 6.2 for
sums of lengths n from 100 to 5000 in steps of 100 with condition numbers ranging
from 107 to 1028. For each dimension and condition number we ran some 1000 test
cases. We compute the number of correct decimal digits, that is − log2(|x − x̃|/|x|),
where x depicts the true result and x̃ its approximation. A negative number of digits
is set to 0.0. The displayed numbers per row are the median (with median absolute
deviation in parenthesis) over all test cases corresponding to that condition number.

Table 6.2
Number of correct digits of summation routines

cond DSum K-B Sum2 SumXBLAS Sum3 Anderson
107 8.9 (0.3) 9.8 (0.2) 16.0 (0.0) 16.0 (0.0) 16.0 (0.0) 16.0 (0.0)
1014 2.0 (0.3) 2.9 (0.2) 16.0 (0.0) 16.0 (0.0) 16.0 (0.0) 15.9 (0.1)
1021 0.0 (0.0) 0.0 (0.0) 10.3 (0.5) 11.1 (0.3) 16.0 (0.0) 15.5 (0.5)
1028 0.0 (0.0) 0.0 (0.0) 3.8 (0.4) 4.3 (0.4) 16.0 (0.0) 15.9 (0.1)

The numbers confirm the expected behavior. For DSum the number of correct
digits is basically 16 − log10 cond , and Kahan-Babuška improves a little on that.
Sum2 and SumXBLAS are maximally accurate until about condition number 1016. For
sums with extreme condition number well over 1016 the results of SumXBLAS are up
to one digit better than Sum2. Note that such extreme condition numbers can occur
in numerical computations only for exactly given data. Such extreme cases can be
handled by Sum3 with maximally accurate result for condition numbers up to about
1032. Anderson’s algorithm is designed to proceed until very high accuracy is achieved,
and this is confirmed by the data. On a processor with built-in extended precision
compiler optimization would improve the results of DSum . We compared results
achieved solely in working precision.

We tested timing of the summation algorithms in the two environments listed in
Table 6.3. All algorithms were tested in Fortran. For a fair comparison we rewrote
the XBLAS routine BLAS_dsum_x [26] into a plain summation routine in Fortran
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Table 6.3
Testing environments

env. I) Pentium 3 800 MHz, Fortran: GNU Compiler Collection (g77-3.3.3)
C: GNU Compiler Collection (gcc-3.3.3), BLAS: ATLAS 3.6.0

env. II) Pentium 4 2.53 GHz, Compaq Visual Fortran 6.6C
C: Microsoft Visual C++ 6.0, BLAS: Intel Math Kernel Library 7.0

omitting extra functionalities like increment etc. The computing time in environment
I) improved slightly by that, and for environment II) rewriting in Fortran improved
the time by more than 40 % over the C-code. For the same values 100 to 5000 in
steps of 100 for n and the same condition numbers we performed 1000 tests each.

Table 6.4
Measured computing time for environments in Table 6.3, recursive summation DSum normed to 1

cond K-B Sum2 SumXBLAS Sum3 Anderson
env. I) 107 4.3 (0.2) 7.1 (0.2) 15.5 (0.1) 16.7 (0.7) 52.5 (3.5)

1014 4.3 (0.2) 7.0 (0.3) 15.4 (0.2) 16.6 (0.7) 53.8 (2.6)
1021 4.4 (0.1) 7.1 (0.1) 15.5 (0.1) 16.9 (0.4) 74.7 (3.7)
1028 4.3 (0.2) 7.0 (0.3) 15.4 (0.3) 16.5 (0.8) 73.0 (2.8)

env. II) 107 3.4 (0.1) 5.1 (0.1) 8.3 (0.1) 11.3 (0.2) 51.8 (1.0)
1014 3.4 (0.0) 5.1 (0.1) 8.3 (0.1) 11.3 (0.1) 51.6 (0.8)
1021 3.4 (0.0) 5.1 (0.1) 8.4 (0.1) 11.3 (0.1) 73.7 (2.3)
1028 3.4 (0.0) 5.1 (0.1) 8.3 (0.1) 11.3 (0.1) 73.5 (1.4)

theor. 4 7 10 13 *

The timing in Table 6.4 is relative to DSum. We display the median over all
test cases (with median absolute deviation in parenthesis). The measured timing of
the ‘simple algorithms’ Kahan-Babuška and Sum2 corresponds in their ratio almost
exactly to the flop count, with numbers even better than theory in environment II).
The ‘more complicated’ algorithms SumXBLAS and Sum3 are significantly slower than
theoretically predicted in environment I), and a little better in environment II). In all
cases the performance in Mflops drops for smaller values of n for all algorithms such
that the ratio stay the same.

The comparison to Anderson’s algorithm is not entirely fair because it is designed
to compute a result of high accuracy, independent of the condition number. This
makes the numbers look worse than they are. On the other hand, as Anderson notes
in his paper, special care is necessary to avoid infinite loops. We did not do that
but filtered those cases. The theoretical computing time depends on the condition
number and on the distribution of the data.

Next we test Algorithms 5.3 (Dot2) and 5.10 (DotK) using ill-conditioned dot
products generated by Algorithm 6.1 (GenDot). We display the relative error of the
computed result res, i.e. |res − xT y|/|xT y|, where the difference in the numerator
is calculated in one dot product of length n + 1 by DotExact. We set relative errors
greater than 2, which means almost no useful information is left, to the value 2. Figure
6.1 shows the results of Algorithm 5.3 (Dot2) for 1000 sample dot products of length
100 for condition numbers between 1 and 10120.

Figure 6.1 corresponds to the error estimate (5.8): for condition numbers up to
eps−1 ∼ 1016, the result is of maximum accuracy, and for condition numbers between
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Fig. 6.1. Test results for Algorithm 5.3 (Dot2), n = 100, 1000 samples

eps−1 and eps−2 ∼ 1032 the relative error degrades to no precision at all (relative
error 1). The dashed line is the error estimate (5.8), showing that it is (of course)
valid, but beyond condition numbers eps−1 pessimistic by 2 or 3 orders of magnitude.

The next Figures 6.2 and 6.3 display the same test for Algorithm 5.10 (DotK) for
K = 3 and K = 4.

The estimation (5.11) for the relative error of the result is again displayed by the
dotted line. With increasing value of K, this error estimate becomes more and more
pessimistic. For condition numbers beyond eps−4 the error estimate (5.11) is already
pessimistic by some 10 orders of magnitude. The figures show that the results of
Algorithm 5.10 (DotK) are of the same quality as if calculated in K-fold precision.

Finally, we performed similar tests for 1000 samples of vectors of length 2000 and
condition numbers between 1 and 10120. To save space, we display all results, that
is that of Algorithm 5.3 (Dot2) and Algorithm 5.10 (DotK) for K = 3, 4, 5, 6, 7 in one
figure.

The behavior is quite similar to the previous examples, so that there seems to be
not much dependency on the length of the vectors. For larger values of K and n the
error estimate (5.11) becomes very conservative. For example, Figure 6.4 shows that
for condition numbers up to 1093 the results of Algorithm 5.10 (DotK) for K = 7 are
still of maximum accuracy. However, the factor 1

2γK
4n−2 ∼ 2·10−85 in the error estimate

(5.11) indicates that maximum accuracy is assured only until condition numbers up
to about 1069, thus conservative by 24 orders of magnitude.

Next we tested the timing of Algorithm 5.3 (Dot2, corresponding to quadruple
precision), and XBLAS Algorithm BLAS_ddot_x (Algorithm 5.6). As for summation
we rewrote BLAS_ddot_x in Fortran according to Algorithm 5.6, omitting extra func-
tionalities like increment etc. The computing time improved similarly to summation.
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Fig. 6.2. Test results for Algorithm 5.10 (DotK), K = 3, n = 100, 1000 samples
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Fig. 6.3. Test results for Algorithm 5.10 (DotK), K = 4, n = 100, 1000 samples
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Fig. 6.4. Test results for Dot2 and DotK, K = 3 : 7, n = 2000, 1000 samples

Table 6.5
Measured computing time for environments in Table 6.3 with BLAS (DDOT) normed to 1

Dot2 DotXBLAS DotK (K=3) DotK (K=4) DotK (K=5)
env. I) 13.5 (0.00) 18.5 (0.00) 21.3 (0.67) 28.2 (0.83) 35.1 (1.00)
env. II) 22.7 (0.33) 38.3 (0.33) 38.0 (0.33) 48.7 (0.33) 59.0 (0.33)
theor. 12.5 18.5 18.5 24.5 30.5

Furthermore we display the timing of Algorithm 5.10 (DotK) for the dot product
in K-fold working precision. For vector lengths of 100 to 5000 in steps of 100 we
tested some 1000 samples each. We compute the measured computing times of the
listed routines relative to that of the BLAS routine DDOT; in Table 6.5 we display the
median over all test cases together with the median absolute deviation in parenthesis.
In the last row we display the theoretical ratio (number of flops for the listed routines
divided by 2n− 1 flops for DDOT).

The numbers confirm the expected ratio 37 : 25 between XBLAS and Dot2 . The
flop counts given in Propositions 5.5 and 5.11 for DotK relative to DDOT are confirmed
as well.

For the first environment the theoretical ratio is approximately achieved, where
in the second environment the measured computing time is about 2 times slower than
theoretically expected. Regarding that the multiply-and-add instruction is likely to
be used, the flop count of DDOT drops to n, and the measured computing time for first
environment is much better than theoretically expected. This may be due to the fact
that more operations are performed in the inner loop thus avoiding possible cache
misses.
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Table 6.6
Measured ratio of computing time for matrix-vector residual for environments in Table 6.3

Dot2 DotXBLAS (F) DotXBLAS (C)
environment I) 3.8 (0.07) 5.0 (0.10) 6.5 (0.84)
environment II) 4.8 (0.13) 9.3 (0.23) 11.3 (0.29)

theoretical 12.5 18.5 18.5

A very typical and more practical application is using a precise dot product for
the iterative refinement of the solution of a linear system.

We wrote a straightforward (unblocked) code for the computation of Ax−b using
Dot2 and XBLAS routine BLAS_ddot_x, where the n×n matrix A and n-vectors x and
b are randomly generated. We tested dimensions 100, 200, . . . , 3000 and computed the
ratio of computing times to the corresponding BLAS routine DGEMV. In Table 6.6 we
display the median of the ratios over all test cases together with the median absolute
deviation in parenthesis. The table gives timing for the Fortran- and for the C-code
of XBLAS.

Table 6.6 shows that Dot2 takes on the average only about 5 times as long for
a result as if computed in quadruple precision compared to BLAS DGEMV in double
precision. This is significantly faster than theoretically expected. The reason may
be again that many operations in the inner loop can be performed in registers. The
numbers also confirm the expected ratio 37 : 25 between XBLAS and Dot2.

Let us interpret Table 6.6 again. Algorithm Dot2 delivers a result as if computed
in quadruple precision and rounded to double. Simulating quadruple precision in
double, we expect a factor 4 in computing time. But this is about the factor we
measure between DGEMV and n-fold application of Dot2. And this although the BLAS-
routine uses optimized code whereas we implemented straightforward code. So our
algorithm shows practically optimal performance !

Frequently few residual iterations in quadruple (i.e. twice the working) precision
suffice to produce an accurate approximation to the solution of a system of linear
equations. To test this we generate linear systems with n = 3000 unknowns and
condition numbers between 1 and 1015. For the generation of an ill-conditioned matrix
A of specified condition number we use randsvd (cf. [15], Section 28.3) and compute
the right hand side by b = A ∗ ones(n, 1). So the approximate solution is the vector
e with all components equal to 1.

However, the multiplication A ∗ ones(n, 1) to generate the right hand side b is
contaminated by rounding errors, so that the difference of the true solution of the
generated linear system and e is of the order of the condition number. To display the
true error of the computed solution we need a reference. The computation of the true
solution of the generated linear system in multiple precision arithmetic is too time
consuming for a system of that size.

Fortunately, we can use so-called verification or self-validating methods (cf. [40])
which compute rigorous error bounds. We used the implementation verifylss in
INTLAB (cf. [39]), which takes about six times the computing time of the Matlab
built-in linear system solver. For high accuracy error bounds we used Algorithm 5.3
(Dot2) for iterative refinement. This sounds like a vicious circle: We test the accuracy
of Dot2 by using a routine where Dot2 is involved. However, iterative refinement is
only used to improve an approximate solution; the error of this approximation is
rigorously estimated by the self-validating routine verifylss (for details, cf. [40] and
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Fig. 6.5. Iterative refinement using double and Dot2 for 3000 unknowns

the literature cited there). All error bounds had a width of two or three units in the
last place for all solution components, so they are of almost maximum accuracy.

Figure 6.5 displays the maximum relative error of all solution components for
performing residual iterations i) in working precision and ii) using Dot2. The two
curves confirm the expected behavior; it was the same for both testing environments
listed in Table 6.3. The relative error for iterative refinement in working precision
generates a backward stable solution (cf. [42]), but the forward error (i.e. the relative
error to the true solution) is of the order eps ·cond (A). For iterative refinement using
Algorithm 5.3 (Dot2) we achieve a maximum relative error 10−16 independent of the
condition number. The number of residual iterations was detected by a standard
stopping criterion, in fact exactly the same as used in verifylss in INTLAB (cf.
[39]), ranging from 2 to maximally 8 iterations depending on the condition number.

The additional (measured) computing time to be invested to achieve maximum
accuracy when using Dot2 for iterative refinement was in the worst case 25 %. For
moderate condition numbers (up to 1012) the additional cost was less than 15 %.

7. Concluding remarks. We presented accurate and fast algorithms for sum-
mation and dot product. The code of the algorithms can be highly optimized, so they
are not only fast in terms of flop count but also in terms of measured computing time.

Our algorithms use only basic floating point operations addition, subtraction and
multiplication, and they use only the same working precision as the data. This offers
the possibility to put them into numerical library algorithms since no special computer
architecture is required. This may especially be interesting for iterative refinement
since highly accurate results can be computed at reasonable additional cost.

We stress again that our algorithms are based on the error-free transformations
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TwoSum and TwoProduct (Algorithms 3.1 and 3.3). If those would be available directly
from the processor, precise dot product evaluation in doubled working precision by
Dot2 would cost only twice as much as the ordinary dot product. An alternative
would be routines TwoSumADD3 and TwoProductFMA (Algorithms 3.6 and 3.5) with the
advantage of having only one output argument.

The error-free transformations allow a nice and simple analysis; we frequently
made use of the mathematical equalities in (2.3). We hope that this article can be
a step towards hardware implementations and standardization of error-free transfor-
mations to further improve the accuracy of numerical algorithms.

Acknowledgement. The authors wish to express their hearty thanks to the
anonymous referees. Their most useful comments and constructive suggestions helped
to improve the paper significantly.
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